Hengduanshan multi-scale disaster causing, disaster pregnant and disaster bearing data spatiotemporal unified data set includes a series of geomorphic data derived from elevation data, annual average normalized vegetation index data, annual average temperature and rainfall data, and night light data of viirs. The geomorphological data cover Hengduanshan area, the vegetation and climate data cover the Qinghai Tibet Plateau, and the nighttime lamp index data cover the whole country. Data collection time varies according to different sources, with the earliest in 2000 and the latest in 2018. The data set is mainly prepared for disaster and risk assessment. In this data set, these data are processed by resampling, spatial correction, optical correction, geomorphic factor calculation, spatial statistics and other processes. The accuracy of the data is consistent with the original accuracy of the data source, and has not been processed by fuzzy processing such as downsampling. In the process of processing, the scientific standard process is used to distinguish continuous and discontinuous data, so as to minimize the data loss in the process of processing.
TANG Chenxiao
This data set is a three-level classification map of Eurasian grassland remote sensing in 2009. The data is in TIF grid format, with a spatial resolution of 1km. The three-level grassland is classified as: temperate meadow grassland, temperate typical grassland, temperate desertification grassland, temperate grassland desertification, and temperate desert. The data is processed according to the ESA global cover 2009 Product global cover map, combined with the historical meteorological data (precipitation, annual accumulated temperature, humidity coefficient, evaporation) and DEM data of ECMWF website. The data can be used to provide the basis for the distribution information and temporal and spatial variation analysis of warm grassland in Eurasia.
TANG Jiakui
This data set is a spatiotemporal variation map of temperate grassland types in Eurasia - three level classification of Inner Mongolia region of China (2009). The data is in TIF grid format with a spatial resolution of 1km. The data is processed on the basis of the existing grass type map of Inner Mongolia grassland. The grassland type map of Inner Mongolia grassland is based on the field survey data, neimengqi County as the unit, the grassland type classification system, on the basis of prediction, the field sample data, remote sensing image and other information data are superposed, and the local historical grassland survey data and relevant data are referred to, and the field plot is modified. We select 2000-2009 historical meteorological data, further analyze and modify the satellite data, and carry out spatial interpolation calculation. The classification of temperate grassland in Inner Mongolia was obtained. The data can be used to provide the basis for the distribution information and temporal and spatial variation analysis of warm grassland in Eurasia.
TANG Jiakui
This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.
Food and Agriculture Organization of the United Nations(FAO)
The sand drift potential data sets of Central Asia in 2017 is in tif format. It covers five countries in Central Asia, including Uzbekistan, Tajikistan, Kyrgyzstan, Kazakhstan and Turkmenistan. The sand drift potential is absolutely drift potential, that is, the sum of the flux in all directions, regardless of the direction of the potential. The data was obtained by GLDAS global three-hour assimilation data extraction calculation. The temporal resolution is month, the spatial resolution is 0.25°, and the time range is 2017. This data set can be used as an important reference data for sand storm disaster assessment.
GAO Xin
The SRTM sensor has two bands, namely C-band and X-band. The SRTM we are using now comes from the C-band. The publicly released SRTM digital elevation products include DEM data at three different resolutions: * SRTM1 covers only the continental United States, with a spatial resolution of 1s; * SRTM3 data covers the world with a spatial resolution of 3s. This is the most widely used dataset. The elevation reference of SRTM3 is the geoid of EGM96 and the horizontal reference is WGS84. The nominal absolute elevation accuracy is ± 16m, and the absolute plane accuracy is ± 20m. * SRTM30 data also covers the world, with a resolution of 30s. There are multiple versions of SRTM data. The early SRTM data was completed by NASA's "JPL" (Jet Propulsion Laboratory) ground data processing system (GDPS). The data is called SRTM3- 1. The National Geospatial Intelligence Agency has further processed the data, and the lack of data has been significantly improved. The data is called SRTM3-2. This dataset is mainly the fourth version of SRTM terrain data obtained by CIAT (International Center for Tropical Agriculture) using a new interpolation algorithm. This method better fills the SRTM 90 data hole. The interpolation algorithm comes from Reuter et al. (2007). The data of SRTM is organized as follows: every 5 latitude and longitude grids is divided into a file, which are divided into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees). The file naming rule is srtm_XX_YY.zip, where XX indicates the number of columns (01-72), and YY indicates the number of rows (01-24). The resolution of the data is 90 m. Data use: SRTM data uses a 16-bit value to represent the elevation value (-/ + / 32767 meters), the maximum positive elevation is 9000 meters, and the negative elevation (12,000 meters below sea level). -32767 standard for empty data.
CGIAR-CSI
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn