Satellite remote sensing provides an efficient pathway to map inland surface water extent across different spatial and temporal scales. However, how to monitor the surface water distribution and its spatiotemporal variability via combining optical and radar remote sensing datasets still faces substantial challenges. A monthyly surface water data set of China derived from optical and radar remote sensing (2018-2020) is provided. The dataset was generated by Seamless Surface Water Mapping Framework (SSWMF) proposed by Yang et al. (2022). The validity of this dataset was further proved over China with an overall accuracy of 92.39% and Kappa coefficient of 0.83. With seamless surface water monitoring, the changes of surface water area can be potentially used to characterize the drought/flood process and evaluate the natural hazard impact.
YANG Yongmin
The data set consists of four sub tables, which are remote sensing monitoring of Lake area from 2000 to 2019, total lake water storage based on underwater 3D simulation model, Lake area volume equation based on underwater 3D simulation model, and key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province. The first sub table is the time series Lake area data from 2000 to 2019 from remote sensing image data monitoring. The third sub table stores the area storage capacity equation of the lake based on the underwater three-dimensional simulation model of the lake. The second sub table is the estimation result by combining the time series Lake area data and the area storage capacity equation, Finally, the key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province from 2000 to 2019 are obtained, including simulated water depth, maximum water depth, simulated reference water level and corresponding Lake area of each lake, which are stored in the fourth sub table.
FANG Chun, LU Shanlong, JU Jianting, TANG Hailong
The SSTG dataset is a global sea surface temperature data during the period of 2002-2019, in Celsius, in monthly temporal and 0.041° spatial resolution. It is produced by combing daily in situ SST data and daily satellite SST retrieval data from two infrared (MODIS and AVHRR) and three passive microwave (AMSR-E, AMSR2, Windsat) radiometers after calibration by using a temperature depth and observation time correction model. The accuracy assessments indicate that the reconstructed dataset exhibits significant improvements and can be used for mesoscale ocean phenomenon analyses.
MAO Kebiao
In this study, an algorithm that combines MODIS Terra and Aqua (500 m) and the Interactive Multisensor Snow and Ice Mapping System (IMS) (4 km) is presented to provide a daily cloud-free snow-cover product (500 m), namely Terra-Aqua-IMS (TAI). The overall accuracy of the new TAI is 92.3% as compared with ground stations in all-sky conditions; this value is significantly higher than the 63.1% of the blended MODIS Terra-Aqua product and the 54.6% and 49% of the original MODIS Terra and Aqua products, respectively. Without the IMS, the daily combination of MODIS Terra-Aqua over the Tibetan Plateau (TP) can only remove limited cloud contamination: 37.3% of the annual mean cloud coverage compared with the 46.6% (MODIS Terra) and 55.1% (MODIS Aqua). The resulting annual mean snow cover over the TP from the daily TAI data is 19.1%, which is similar to the 20.6% obtained from the 8-day MODIS Terra product (MOD10A2) but much larger than the 8.1% from the daily blended MODIS Terra-Aqua product due to the cloud blockage.
ZHANG Guoqing
Based on Landsat data (kh-9 data in 1976 as auxiliary data), glacial lake data of nearly 40 years (1970s-2018) in the western Nyainqentanglha range were obtained by manual digitization and visual interpretation. The variation characteristics of glacial lake over 0.0036 square kilometers in terms of type, size, elevation and watershed were analyzed in detail. The results show that, between 1976 and 2018, the number of glacial lakes increased by 56% from 192 to 299 and their total area increased by 35% from 6.75 ± 0.13 square kilometers to 9.12 ± 0.13 square kilometers ; the type of glacial lake is changing obviously; the smaller glacial lake is changing faster; the expansion of glacial lake is developing to higher altitude.
LUO Wei, ZHANG Guoqing
Lakes on the Tibetan Plateau (TP) are an indicator and sentinel of climatic changes. We extended lake area changes on the TP from 2010 to 2021, and provided a long and dense lake observations between the 1970s and 2021. We found that the number of lakes, with area larger than 1 k㎡ , has increased to ~1400 in 2021 from ~1000 in the 1970s. The total area of these lakes decreased between the 1970s and ~1995, and then showed a robust increase, with the exception of a slight decrease in 2015. This expansion of the lakes on the highest plateau in the world is a response to a hydrological cycle intensified by recent climate changes.
ZHANG Guoqing
The multi-decadal lake number and area changes in China during 1960s–2020 are derived from historical topographic maps and >42151 Landsat satellite images, including lakes as fine as ≥1 km^2 in size for the past 60 years (1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020). From the 1960s to 2020, the total number of lakes (≥ 1 km ^ 2) in China increased from 2127 to 2621, and the area expanded from 68537 km ^ 2 to 82302 km ^ 2.
ZHANG Guoqing
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn