This data set is a three-level classification map of Eurasian grassland remote sensing in 2009. The data is in TIF grid format, with a spatial resolution of 1km. The three-level grassland is classified as: temperate meadow grassland, temperate typical grassland, temperate desertification grassland, temperate grassland desertification, and temperate desert. The data is processed according to the ESA global cover 2009 Product global cover map, combined with the historical meteorological data (precipitation, annual accumulated temperature, humidity coefficient, evaporation) and DEM data of ECMWF website. The data can be used to provide the basis for the distribution information and temporal and spatial variation analysis of warm grassland in Eurasia.
TANG Jiakui
This data set is a spatiotemporal variation map of temperate grassland types in Eurasia - three level classification of Inner Mongolia region of China (2009). The data is in TIF grid format with a spatial resolution of 1km. The data is processed on the basis of the existing grass type map of Inner Mongolia grassland. The grassland type map of Inner Mongolia grassland is based on the field survey data, neimengqi County as the unit, the grassland type classification system, on the basis of prediction, the field sample data, remote sensing image and other information data are superposed, and the local historical grassland survey data and relevant data are referred to, and the field plot is modified. We select 2000-2009 historical meteorological data, further analyze and modify the satellite data, and carry out spatial interpolation calculation. The classification of temperate grassland in Inner Mongolia was obtained. The data can be used to provide the basis for the distribution information and temporal and spatial variation analysis of warm grassland in Eurasia.
TANG Jiakui
Ecological carrying capacity refers to the maximum population scale with a certain level of social and economic development that can be sustainably carried by the ecosystem without damaging the production capacity and functional integrity of the ecosystem, per person/square kilometer. Spatial distribution data of ecological carrying capacity were calculated based on NPP data simulated by VPM model and FAO production and trade data of agriculture, forestry and animal husbandry. Based on NPP data and combined with the land use data of cci-ci and biomass ratio parameters of various ecosystems, ANPP data was obtained to serve as ecological supply quantity. Based on agricultural, forestry and animal husbandry production and trade data and combined with population data, per capita ecological consumption standards of countries along the One Belt And One Road line were obtained, and then national scale data space was rasterized. The spatial rasterized ecological bearing data are obtained by dividing the ecological supply data with the per capita ecological consumption standard.
YAN Huiming
This dataset is based on the long sequence (1981-2013)normalized difference vegetation index product(Version 3) of the latest NOAA Global Inventory Monitoring and Modeling System (GIMMS). First, the NDVI data products were re-sampled from the spatial resolution of 1/12 degree to 0.5 degree, then the time series of every year was smoothed by the double-logistic method, and the smoothed curvature was calculated. The maximum curvature of spring was selected as the returning green stage of the vegetation in Spring. This data can be used to analyze the temporal and spatial characteristics of the Holarctic vegetation phenology in Spring.
XU Xiyan
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn