The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.
METI, National Aeronautics and Space Administration
This dataset contains three basic remote sensing data of digital topography (DEM), TM remote sensing image and NDVI vegetation index of badan jilin desert. 1. DEM, digital terrain data, from the SRTM1 data set released by NASA in the United States, was cropped in the desert area.The resolution is 30 m.The data is stored in the DEM folder, and the dm.ovr file can be opened by ArcGIS. 2. TM image data.The composite data of Landsat TM/ETM + 543 band released by NASA were cropped in the desert lake group distribution area.The resolution is 30 m.From 1990 to 2010, one scene was selected in summer and one scene in autumn every five years to analyze the long-term changes of the lake.In 2002, there was a scene for each quarter to analyze the changes of the lake during the year.The data is stored in TM folder, TIFF format, can be opened by ArcGIS or ENVI software.The file naming rule is yyyymm.tif, where yyyy refers to the year and mm to the month. For example, 199009 refers to the time corresponding to the impact data of September 1990. 3. NDVI, vegetation index.The modis-ndvi product MOD13Q1, released by NASA, was cropped in desert areas.The NDVI data of every ten days of the growing season (June, July, August and September) from 2000 to 2012 are included. The spatial resolution is 250 m and the temporal resolution is 16 days.Stored in NDVI folder, TIFF format, can be opened by ArcGIS or ENVI software.Mosaic_tmp_yyyyddd.hdfout.250m_16_days_ndvi_roi.tif, Where yyyy represents the year and DDD represents the day of DDD of the year.
JIN Xiaomei, HU Xiaonong
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn