The data source of this data set is the European Space Agency (ESA) multispectral satellite Sentinel-2. It includes the annual mean data of CDOM and DOC of Qinghai Tibet Plateau lakes in 2017. Method of use: Based on the CDOM data of the measured sample points, the image reflectance information is extracted, the best prediction variable is selected through Pearson correlation analysis, and a multiple stepwise regression CDOM prediction model is constructed to obtain the CDOM results of the Qinghai Tibet Plateau water body. Because CDOM has a good correlation with DOC, DOC prediction results are calculated by CDOM. Adjustment R of the CDOM model of the final Qinghai Tibet Plateau ² Up to 0.81.
SONG Kaishan
Based on the data of GF-1 and GF-2 in China, the freeze-thaw disaster distribution data of Qinghai Tibet project corridor is produced by using the deep learning classification method and manual visual interpretation and correction. The geographical range of the data is 40km along the Xidatan Anduo section of Qinghai Tibet highway. The data include the distribution data of thermokast lakes and the distribution data of thermal melting landslides. The dataset can provide data basis for the research of freeze-thaw disaster and engineering disaster prevention and reduction in Qinghai Tibet engineering corridor. The spatial distribution of freezing and thawing disasters within 40km along the Xidatan-Anduo section of Qinghai Tibet highway is self-made based on the domestic GF-2 image data. Firstly, the deep learning method is used to extract the mud flow terrace block from GF-2 data; Then, ArcGIS is used for manual editing.
NIU Fujun, LUO Jing LUO Jing
Terrestrial actual evapotranspiration (ET) is an essential ecohydrological process linking the land surface energy, water and carbon cycles, and plays a critical role in the earth system. This global ET dataset is obtained based on ETMonitor model, which combines parameterizations for different processes and land cover types, with multi-source satellite data as input. Several open accessed remote sensing variables, e.g., LAI, FVC, albedo, surface soil moisture, dynamic surface water cover and snow/ice cover, were used as input to estimate daily ET. The meteorological variables from ERA5 reanalysis dataset were also adopted. The ETMonitor model is applied at daily scale to estimate the ET components at 1-km resolution, including vegetation transpiration, soil evaporation, canopy precipitation interception loss, water surface evaporation and snow/ice sublimation on daily step, and the total actual ET is estimated as the sum of these components. Overall, the actual ET estimated by ETMonitor agreed well with ground measurements from 251 flux towers across various ecosystems and climate zones globally, with high correlation (0.75), low bias (0.08mm/d), and low root mean square error (0.93 mm/d). The estimated ET showed reasonable spatial patterns, and superior in presenting the spatial variation of ET especially in the mountain regions and in the arid irrigated cropland regions. The ET estimation is conducted at daily temporal step and 1km spatial resolution. For easier publication, the daily/1-km ET from ETMonitor (https://doi.org//10.12237/casearth.6253cddc819aec49731a4bc2) was summed to obtain monthly ET in this dataset. The data type is 16-bit signed integer, the scale factor is 0.1, and the unit is mm/month. The missing values were filled by -1.
ZHENG Chaolei , JIA Li , HU Guangcheng
Timely and correct observation of the spatial and temporal patterns and dynamics of oases is important for the property socioeconomic development of arid zones. During this study, a complete of 9 periods of Landsat image knowledge in 1986, 1990, 1995, 2000, 2005, 2010, 2015, 2018, and 2020 were accustomed get oasis distribution knowledge within the Hexi region from 1986 to 2020 employing a combination of OSTU threshold methodology and manual visual interpretation, and combined with high-resolution Google Earth pictures and field validation knowledge were combined to ascertain random sample points supported confusion matrix to verify the accuracy of oasis extraction results. The overall accuracy of oasis data in Hexi Corridor is over 94%, and the Kappa coefficient is over 0.88. This dataset can provide data support for the ecological environment protection of Hexi oasis.
XIE Yaowen, ZHANG Xueyuan, LIU Yiyang, HUANG Xiaojun, LI Ruyan, ZONG Leli, XIAO Min, QIN Mengyao
Based on the Sentinel-2 and Landsat 5/7/8 multispectral instrument imageries combined with in-situ measured hydrological data, bankfull river geometry of six major exorheic river basins of the Qinghai-Tibet Plateau (the upper Yellow River, upper Jinsha River, Yalong River, Lantsang River, Nu River and Yalung Zangbo River) are presented. River surface of six mainstreams and major tributaries are included. For each river basin, two types of rivers are included: connected and disconnected rivers. Format of the dataset is .shp exported from the ArcGIS 10.5. Three products are included in the dataset: one original product (bankfull river surface dataset) and two derived products (bankfull river width dataset and bankfull river surface area dataset with a 1 km river length interval). These three products are in three folders. The first folder, “1-Bankfull River Surface”, contains river surface vectors for six river basins in the .shp file. The second folder, “2-Bankfull River Width”, contains bankfull river widths and corresponding coordinates with a 1 km-step river length for six mainstreams and some connected tributaries in .xlsx format. The river width vectors in the .shp files are also provided in the second folder. The third folder, “3-Bankfull River Surface Area”, contains bankfull river surface areas and corresponding coordinates with a 1 km-step river length for six mainstreams and some connected tributaries in .xlsx format. Three Supplementary Files are included: Supplementary File 1, tables and figures related to the dataset; Supplementary File 2, used for river surface extraction based on GEE platform; Supplementary File 3, used for river width extraction based on Matlab. The provided planform river hydromorphology data can supplement global hydrography datasets and effectively represent the combined fluvial geomorphology and geological background in the study area.
LI Dan , XUE Yuan , QIN Chao , WU Baosheng , CHEN Bowei , WANG Ge
Fractional Vegetation Cover (FVC) refers to the percentage of the vertical projected area of vegetation to the total area of the study area. It is an important indicator to measure the effectiveness of ecological protection and ecological restoration. It is widely used in the fields of climate, ecology, soil erosion and so on. FVC is not only an ideal parameter to reflect the productivity of vegetation, but also can play a good role in evaluating topographic differences, climate change and regional ecological environment quality. This research work is mainly to post process two sets of glass FVC data, and give a more reliable vegetation coverage of the circumpolar Arctic Circle (north of 66 ° n) and the Qinghai Tibet Plateau (north of 26 ° n to 39.85 °, east longitude 73.45 ° to 104.65 °) in 2013 and 2018 through data fusion, elimination of outliers and clipping.
YE Aizhong
NDVI reflects the background effects of plant canopy, such as soil, wet ground, snow, dead leaves, roughness, etc., and is related to vegetation cover. It is one of the important parameters to reflect the crop growth and nutrient information. According to this parameter, the N demand of crops in different seasons can be known, which is an important guide to the reasonable application of N fertilizer. Correct NDVI (C-NDVI) is the value of NDVI after excluding the influence of climate elements (temperature, precipitation, etc.) on NDVI. Taking precipitation as an example, studies on the lag effect of precipitation on vegetation growth show that the lag time of precipitation effects varies in different regions due to differences in vegetation composition and soil types. In this study, we post-processed the MODIS NDVI data and firstly correlated the NDVI value of the current month with the precipitation of the current month, the average value of the precipitation of the current month with that of the previous month, and the average value of the precipitation of the current month with that of the previous two months to determine the optimal lag time. The NDVI was regressed on precipitation and air temperature to obtain the correlation coefficients, and then the corrected NDVI values were calculated by the difference between the MODIS NDVI and the NDVI regressed on climate factors. We corrected NDVI using climate data to give reliable vegetation correction indices for the circum-Arctic Circle (range north of 66°N) and the Tibetan Plateau (range 26°N to 39.85°N and 73.45°E to 104.65°E) for 2013 and 2018. The spatial resolution of the data is 0.5 degrees and the temporal resolution is monthly values.
YE Aizhong
Net Primary Productivity (NPP) refers to the total amount of organic matter produced by photosynthesis in green plants per unit time and area. As the basis of water cycle, nutrient cycle and biodiversity change in terrestrial ecosystems, NPP is an important ecological indicator for estimating earth support capacity and evaluating sustainable development of terrestrial ecosystems. This data set includes the monthly synthesis of 30m*30m surface LAI products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly NPP products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun , LI Yi, ZHONG Bo
Leaf Area Index (LAI) is defined as half of the total Leaf Area within the unit projected surface Area, and is one of the core parameters used to describe vegetation. LAI controls many biological and physical processes of vegetation, such as photosynthesis, respiration, transpiration, carbon cycle and precipitation interception, and meanwhile provides quantitative information for the initial energy exchange on the surface of vegetation canopy. LAI is a very important parameter to study the structure and function of vegetation ecosystem. This data set includes the monthly synthesis of 30m LAI products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly LAI products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun , LI Yi, ZHONG Bo
Normalized Difference Vegetation Index (NDVI) is the sum of the reflectance values of the NIR band and the red band by the Difference ratio of the reflectance values of the NIR band and the red band. Vegetation index synthesis refers to the selection of the best representative of vegetation index within the appropriate synthesis cycle, and the synthesis of a vegetation index grid image with minimal influence on spatial resolution, atmospheric conditions, cloud conditions, observation geometry, and geometric accuracy and so on. This data set includes the monthly synthesis of 30m*30m surface vegetation index products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly NDVI products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun , LI Yi, ZHONG Bo
Fractional Vegetation Coverage (FVC) is defined as the proportion of the vertical projection area of Vegetation canopy or leaf surface to the total Vegetation area, which is an important indicator to measure the status of Vegetation on the surface. In this dataset, vegetation coverage is an evaluation index reflecting vegetation coverage. 0% means that there is no vegetation in the surface pixel, that is, bare land. The higher the value, the greater the vegetation coverage in the region. This data set includes the monthly synthesis of 30m*30m surface vegetation index products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly FVC products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun , LI Yi, ZHONG Bo
China cloud-removal snow albedo product data set is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
The considerable amount of solid clastic material in the Yarlung Tsangpo River Basin (YTRB)) is one of the important components in recording the uplift and denudation history of the Tibet Plateau. Different types of unconsolidated sediments directly reflect the differential transport of solid clastic material. Revealing its spatial distribution and total accumulation plays an important value in the uplift and denudation process of the Tibet Plateau. The dataset includes three subsets: the type and spatial distribution of unconsolidated sediments in theYTRB, the thickness spatial distribution, and the quantification of total deposition. Taking remote sensing interpretation and geological mapping as the main technical method, the classification and spatial distribution characteristics of unconsolidated sediments in the whole YTRB (16 composite sub-basins) were comprehensively clarified for the first time. Based on the field measurement of sediment thickness, the total accumulation was preliminarily estimated. A massive amount of sediment is an important material source of landslide, debris flow and flood disasters in the basin. Finding out its spatial distribution and total amount accumulation not only has theoretical significance for revealing the key information recorded in the process of sediment source to sink, such as surface environmental change, regional tectonic movement, climate change and biogeochemical cycle, but also has important application value for plateau ecological environment monitoring and protection, flooding disaster warning and prevention, major basic engineering construction, and soil and water conservation.
LIN Zhipeng, WANG Chengshan , HAN Zhongpeng, BAI Yalige, WANG Xinhang, ZHANG Jian, MA Xinduo, HU Taiyu, ZHANG Chenjin
This dataset contains daily land surface evapotranspiration products of 2021 in Qilian Mountain area. It has 0.01 degree spatial resolution. The dataset was produced based on Gaussian Process Regression (GPR) method by fusing six satellite-derived evapotranspiration products including RS-PM (Mu et al., 2011), SW (Shuttleworth and Wallace., 1985), PT-JPL (Fisher et al., 2008), MS-PT (Yao et al., 2013), SEMI-PM (Wang et al., 2010a) and SIM (Wang et al.2008). The input variables for the evapotranspiration products include MODIS products, and MERRA meteorological data.
YAO Yunjun, LIU Shaomin, SHANG Ke
ChinaSA is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions. To assess the retrieval quality of ChinaSA, the accuracy of the snow albedo product was verified using observations from in-situ meteorological stations and the sample observation validation method, and compared with the accuracy of four commonly used albedo products (GLASS, GlobAlbedo, MCD43A3 and SAD). The validation results show that ChinaSA outperforms the other products in all validations, with a root mean square error (RMSE) of less than 0.12, and can achieve a RMSE of 0.021 in forest areas.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
Soil moisture is an important boundary condition of earth-atmosphere exchanges, and it has been defined as an essential climate variable by GCOS. Vegetation optical depth is a physical variable to measure the attenuation of vegetation in microwave radiative transfer model, and it has been proved to be a good indicator of vegetation water content and biomass. This dataset uses the multi-channel collaborative algorithm (MCCA) to retrieve both soil moisture and polarized vegetation optical depth with SMAP brightness temperature. The algorithm uses a self-constraint relationship between land parameters and an analytical relationship between brightness temperature at different channels to perform the retrieval process. The MCCA does not depend on other auxiliary data on vegetation properties and can be applied to a variety of satellites. The soil moisture product from this dataset includes the soil moisture content in the unfrozen period and the liquid water content in the frozen period. Both horizontal- and vertical-polarization vegetation optical depth are retrieved. So far as we know, it is the first polarization-dependent vegetation optical depth product at L-band. This dataset was validated by 19 dense soil moisture observation networks (9 core validation sites used by SMAP team and 13 sites not used by them), and the widely used soil climate analysis network (SCAN). It was found that ubRMSE (unbiased root mean square error) of MCCA retrieved soil moisture is generally smaller than that of other SMAP products.
ZHAO Tianjie, PENG Zhiqing , YAO Panpan, SHI Jiancheng
Photosynthetically active radiation (PAR) is fundamental physiological variable driving the process of material and energy exchange, and is indispensable for researches in ecological and agricultural fields. In this study, we produced a 35-year (1984-2018) high-resolution (3 h, 10 km) global grided PAR dataset with an effective physical-based PAR model. The main inputs were cloud optical depth from the latest International Satellite Cloud Climatology Project (ISCCP) H-series cloud products, the routine variables (water vapor, surface pressure and ozone) from the ERA5 reanalysis data, aerosol from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) products and albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) product after 2000 and CLARRA-2 product before 2000. The grided PAR products were evaluated against surface observations measured at seven experimental stations of the SURFace RADiation budget network (SURFRAD), 42 experimental stations of the National Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese Ecosystem Research Network (CERN). The instantaneous PAR was validated at the SURFRAD and NEON, and the mean bias errors (MBEs) and root mean square errors (RMSEs) are 5.6 W m-2 and 44.3 W m-2, and 5.9 W m-2 and 45.5 W m-2, respectively, and correlation coefficients (R) are both 0.94 at 10 km scale. When averaged to 30 km, the errors were obviously reduced with RMSEs decreasing to 36.3 W m-2 and 36.3 W m-2 and R both increasing to 0.96. The daily PAR was validated at the SURFRAD, NEON and CERN, and the RMSEs were 13.2 W m-2, 13.1 W m-2 and 19.6 W m-2, respectively at 10 km scale. The RMSEs were slightly reduced to 11.2 W m-2, 11.6 W m-2, and 18.6 W m-2 when upscaled to 30 km. Comparison with the other well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES) reveals that our PAR product was a more accurate dataset with higher resolution than the CRERS. Our grided PAR dataset would contribute to the ecological simulation and food yield assessment in the future.
TANG Wenjun
This data set is based on the remote sensing monitoring data set of landuse status in China, Chinese Academy of Sciences, and the data of land use types of Qilian Mountain National Park in 1985 through cutting, splicing and other operations. Data production is the vector data generated by manual visual interpretation using Landsat TM / ETM Remote sensing images as the main data source. Landuse types include cropland, forest, shrub, grassland, wetland, water, tundra, impervious surface, bareland, glacier and permanent snow. We can analyze the historical landuse types in Qilian mountain area, and analyze the changes of land use types in Qilian mountain area combined with the current landuse type data.
NIAN Yanyun
Lidar, multispectral and thermal infrared data are important observation data in the research fields of hydrology, ecology and environmental monitoring. This data set is the observation data of UAV in the integrated observation experiment of heaven and earth in the middle reaches of Heihe River Basin in 2020. The data set includes UAV remote sensing data from August 16 to 21, 2020. The UAV platform is Dajiang Phantom 4-multispectral version. Including lidar data of Daman superstation (August 16-21), Huazhaizi station (August 19) and Wetland station (August 21). The laser scanning system is Tovos DroneScan, with scanning frequency of 300000 points/s, point density of 100 points/m2 and scanning accuracy of 5 cm; Multispectral data of Daman superstation (August 18), Huazhaizi station (August 19) and Wetland station (August 21). The data set includes five bands of images, namely blue (450nm ± 16nm), green (560nm ± 16nm), red (650nm ± 16nm), red edge (730nm ± 16nm) and near infrared (840nm ± 26nm); And NDVI and reflectance data products corresponding to Wetland station and Huazhaizi station. The spatial resolution of the above data is about 0.2 m; In addition, it also includes the thermal infrared data of Huazhaizi station (August 18 and 19) and Wetland station (August 21). The wavelength range of thermal infrared channel is 7.5-13.5 μm. Imaging system sensitivity (nedt) < 50 mk, maximum frame rate: 30Hz, scene range (high gain): 640 × 512: -25° to 135℃, 336 × 256: -25° to 100℃, scene range (low gain): -40° to 550℃.
This vegetation water content data set is derived from the ground synchronous observation in the Luanhe River Basin soil moisture remote sensing experiment, including 55 sampled plots.The vegetation types involved in these sampled plots include grass, corn, potatoes, naked oats and carrots. The data measurement time is from September 13, 2018 to September 26, 2018.
ZHENG Xingming, JIANG Tao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn