Fractional Vegetation Cover (FVC) refers to the percentage of the vertical projected area of vegetation to the total area of the study area. It is an important indicator to measure the effectiveness of ecological protection and ecological restoration. It is widely used in the fields of climate, ecology, soil erosion and so on. FVC is not only an ideal parameter to reflect the productivity of vegetation, but also can play a good role in evaluating topographic differences, climate change and regional ecological environment quality. This research work is mainly to post process two sets of glass FVC data, and give a more reliable vegetation coverage of the circumpolar Arctic Circle (north of 66 ° n) and the Qinghai Tibet Plateau (north of 26 ° n to 39.85 °, east longitude 73.45 ° to 104.65 °) in 2013 and 2018 through data fusion, elimination of outliers and clipping.
YE Aizhong
Net Primary Productivity (NPP) refers to the total amount of organic matter produced by photosynthesis in green plants per unit time and area. As the basis of water cycle, nutrient cycle and biodiversity change in terrestrial ecosystems, NPP is an important ecological indicator for estimating earth support capacity and evaluating sustainable development of terrestrial ecosystems. This data set includes the monthly synthesis of 30m*30m surface LAI products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly NPP products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun , LI Yi, ZHONG Bo
Leaf Area Index (LAI) is defined as half of the total Leaf Area within the unit projected surface Area, and is one of the core parameters used to describe vegetation. LAI controls many biological and physical processes of vegetation, such as photosynthesis, respiration, transpiration, carbon cycle and precipitation interception, and meanwhile provides quantitative information for the initial energy exchange on the surface of vegetation canopy. LAI is a very important parameter to study the structure and function of vegetation ecosystem. This data set includes the monthly synthesis of 30m LAI products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly LAI products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun , LI Yi, ZHONG Bo
Normalized Difference Vegetation Index (NDVI) is the sum of the reflectance values of the NIR band and the red band by the Difference ratio of the reflectance values of the NIR band and the red band. Vegetation index synthesis refers to the selection of the best representative of vegetation index within the appropriate synthesis cycle, and the synthesis of a vegetation index grid image with minimal influence on spatial resolution, atmospheric conditions, cloud conditions, observation geometry, and geometric accuracy and so on. This data set includes the monthly synthesis of 30m*30m surface vegetation index products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly NDVI products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun , LI Yi, ZHONG Bo
Fractional Vegetation Coverage (FVC) is defined as the proportion of the vertical projection area of Vegetation canopy or leaf surface to the total Vegetation area, which is an important indicator to measure the status of Vegetation on the surface. In this dataset, vegetation coverage is an evaluation index reflecting vegetation coverage. 0% means that there is no vegetation in the surface pixel, that is, bare land. The higher the value, the greater the vegetation coverage in the region. This data set includes the monthly synthesis of 30m*30m surface vegetation index products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly FVC products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun , LI Yi, ZHONG Bo
The considerable amount of solid clastic material in the Yarlung Tsangpo River Basin (YTRB)) is one of the important components in recording the uplift and denudation history of the Tibet Plateau. Different types of unconsolidated sediments directly reflect the differential transport of solid clastic material. Revealing its spatial distribution and total accumulation plays an important value in the uplift and denudation process of the Tibet Plateau. The dataset includes three subsets: the type and spatial distribution of unconsolidated sediments in theYTRB, the thickness spatial distribution, and the quantification of total deposition. Taking remote sensing interpretation and geological mapping as the main technical method, the classification and spatial distribution characteristics of unconsolidated sediments in the whole YTRB (16 composite sub-basins) were comprehensively clarified for the first time. Based on the field measurement of sediment thickness, the total accumulation was preliminarily estimated. A massive amount of sediment is an important material source of landslide, debris flow and flood disasters in the basin. Finding out its spatial distribution and total amount accumulation not only has theoretical significance for revealing the key information recorded in the process of sediment source to sink, such as surface environmental change, regional tectonic movement, climate change and biogeochemical cycle, but also has important application value for plateau ecological environment monitoring and protection, flooding disaster warning and prevention, major basic engineering construction, and soil and water conservation.
LIN Zhipeng, WANG Chengshan , HAN Zhongpeng, BAI Yalige, WANG Xinhang, ZHANG Jian, MA Xinduo, HU Taiyu, ZHANG Chenjin
This dataset contains daily land surface evapotranspiration products of 2021 in Qilian Mountain area. It has 0.01 degree spatial resolution. The dataset was produced based on Gaussian Process Regression (GPR) method by fusing six satellite-derived evapotranspiration products including RS-PM (Mu et al., 2011), SW (Shuttleworth and Wallace., 1985), PT-JPL (Fisher et al., 2008), MS-PT (Yao et al., 2013), SEMI-PM (Wang et al., 2010a) and SIM (Wang et al.2008). The input variables for the evapotranspiration products include MODIS products, and MERRA meteorological data.
YAO Yunjun, LIU Shaomin, SHANG Ke
ChinaSA is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions. To assess the retrieval quality of ChinaSA, the accuracy of the snow albedo product was verified using observations from in-situ meteorological stations and the sample observation validation method, and compared with the accuracy of four commonly used albedo products (GLASS, GlobAlbedo, MCD43A3 and SAD). The validation results show that ChinaSA outperforms the other products in all validations, with a root mean square error (RMSE) of less than 0.12, and can achieve a RMSE of 0.021 in forest areas.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
Photosynthetically active radiation (PAR) is fundamental physiological variable driving the process of material and energy exchange, and is indispensable for researches in ecological and agricultural fields. In this study, we produced a 35-year (1984-2018) high-resolution (3 h, 10 km) global grided PAR dataset with an effective physical-based PAR model. The main inputs were cloud optical depth from the latest International Satellite Cloud Climatology Project (ISCCP) H-series cloud products, the routine variables (water vapor, surface pressure and ozone) from the ERA5 reanalysis data, aerosol from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) products and albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) product after 2000 and CLARRA-2 product before 2000. The grided PAR products were evaluated against surface observations measured at seven experimental stations of the SURFace RADiation budget network (SURFRAD), 42 experimental stations of the National Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese Ecosystem Research Network (CERN). The instantaneous PAR was validated at the SURFRAD and NEON, and the mean bias errors (MBEs) and root mean square errors (RMSEs) are 5.6 W m-2 and 44.3 W m-2, and 5.9 W m-2 and 45.5 W m-2, respectively, and correlation coefficients (R) are both 0.94 at 10 km scale. When averaged to 30 km, the errors were obviously reduced with RMSEs decreasing to 36.3 W m-2 and 36.3 W m-2 and R both increasing to 0.96. The daily PAR was validated at the SURFRAD, NEON and CERN, and the RMSEs were 13.2 W m-2, 13.1 W m-2 and 19.6 W m-2, respectively at 10 km scale. The RMSEs were slightly reduced to 11.2 W m-2, 11.6 W m-2, and 18.6 W m-2 when upscaled to 30 km. Comparison with the other well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES) reveals that our PAR product was a more accurate dataset with higher resolution than the CRERS. Our grided PAR dataset would contribute to the ecological simulation and food yield assessment in the future.
TANG Wenjun
This data set is based on the remote sensing monitoring data set of landuse status in China, Chinese Academy of Sciences, and the data of land use types of Qilian Mountain National Park in 1985 through cutting, splicing and other operations. Data production is the vector data generated by manual visual interpretation using Landsat TM / ETM Remote sensing images as the main data source. Landuse types include cropland, forest, shrub, grassland, wetland, water, tundra, impervious surface, bareland, glacier and permanent snow. We can analyze the historical landuse types in Qilian mountain area, and analyze the changes of land use types in Qilian mountain area combined with the current landuse type data.
NIAN Yanyun
Lidar, multispectral and thermal infrared data are important observation data in the research fields of hydrology, ecology and environmental monitoring. This data set is the observation data of UAV in the integrated observation experiment of heaven and earth in the middle reaches of Heihe River Basin in 2020. The data set includes UAV remote sensing data from August 16 to 21, 2020. The UAV platform is Dajiang Phantom 4-multispectral version. Including lidar data of Daman superstation (August 16-21), Huazhaizi station (August 19) and Wetland station (August 21). The laser scanning system is Tovos DroneScan, with scanning frequency of 300000 points/s, point density of 100 points/m2 and scanning accuracy of 5 cm; Multispectral data of Daman superstation (August 18), Huazhaizi station (August 19) and Wetland station (August 21). The data set includes five bands of images, namely blue (450nm ± 16nm), green (560nm ± 16nm), red (650nm ± 16nm), red edge (730nm ± 16nm) and near infrared (840nm ± 26nm); And NDVI and reflectance data products corresponding to Wetland station and Huazhaizi station. The spatial resolution of the above data is about 0.2 m; In addition, it also includes the thermal infrared data of Huazhaizi station (August 18 and 19) and Wetland station (August 21). The wavelength range of thermal infrared channel is 7.5-13.5 μm. Imaging system sensitivity (nedt) < 50 mk, maximum frame rate: 30Hz, scene range (high gain): 640 × 512: -25° to 135℃, 336 × 256: -25° to 100℃, scene range (low gain): -40° to 550℃.
This vegetation water content data set is derived from the ground synchronous observation in the Luanhe River Basin soil moisture remote sensing experiment, including 55 sampled plots.The vegetation types involved in these sampled plots include grass, corn, potatoes, naked oats and carrots. The data measurement time is from September 13, 2018 to September 26, 2018.
ZHENG Xingming, JIANG Tao
Water clarity, as a first-order indicator that reflects the optical characteristics of water bodies, represents a comprehensive proxy for aquatic ecosystems’ trophic state. Optical remote sensing technology makes it possible to monitor water clarity changes of lakes (including reservoirs) at large scales. Water clarity annual dynamics dataset of lakes (>1 ha) across China covers the period from 1990 to 2018, with a time resolution of 5-year and spatial resolution of 30 meters, which sources from the Landsat top of air reflectance data embedded in the GEE platform. Three in-situ SDD measurement datasets were used for model calibration and validation. The first dataset was obtained from 37 field campaigns by our team during 2004-2018. Three quarters of this dataset (N= 976) were used to calibrate the model, for which the R2 and rRMSE were 0.79 and 61.9%, respectively; the remaining dataset (N= 325) was used to validate the model, and the validation results indicated stable performance by showing comparative errors (R2=0.80, rRMSE = 57.6%). The second and the third datasets were both used to validate model performance with a major focus on testing the temporal transferability of the model. The second dataset (340 samples), collected as part of the Chinese lakes survey conducted by Nanjing Institute of Geography and Limnology from 2007 to 2009, also indicated a good model performance (R2=0.78, rRMSE% = 59.1%); the third dataset (229 samples) was assembled by the first lake surveys conducted in the 1980s, demonstrating a stable performance for lake SDD before 1990s (R2=0.81, rRMSE = 50.6%). Comparison of validation results for these different periods and datasets demonstrated the stable performance of the SDD model. Finally, based on the water clarity estimation model, the algorithms of cloud mask and water index were conducted on the GEE platform to accomplish the water clarity of lakes across China. The water clarity information could assist local, provincial or even national level decision-making on policies/management for protecting or improving inland water quality.
TAO Hui, SONG Kaishan, LIU Ge, WANG Qiang, WEN Zhidan
NDVI is a very important vegetation index for the research of vegetation growth and land cover classification. This dataset provides the monthly normalized differential vegetation index (NDVI) of UAV remote sensing with a spatial resolution of 0.2 m from June to October in 2020. It was measured in the midstream of Heihe River Basin over typical stations. The Pix4D mapper software was used for image mosaic and NDVI calculation.
LIU Shaomin, ZHOU Ji, JIN Zichun, WANG Ziwei
Land Surface temperature is one of the important parameters of surface energy balance. This dataset is the monthly land surface temperature data of typical stations in Heihe River Basin from June to October in 2020; In flight, DJI M600 Pro UAV was equipped with the WIRIS Pro sc thermal imager. taking SD station in the wetland, DM station in the oasis and Hz station in the desert as the center, the land surface temperature was observed, and the surface brightness temperature image was obtained. The flying height of the UAV was about 300m, the pixel of the thermal imager was 336x256, and the spatial resolution of the image was 0.4m. The surface temperature retrieval algorithm is an improved single channel algorithm, which is applied to the surface brightness temperature data obtained by UAV thermal imager, and finally the land surface temperature data with 0.4 m spatial resolution is obtained.
LIU Shaomin, ZHOU Ji, WANG Ziwei
Land surface temperature (LST) is one of the important parameters of the interface between the earth's surface and atmosphere. It is not only the direct reflection of the interaction between the surface and the atmosphere, but also has a complex feedback effect on the earth atmosphere process. Therefore, land surface temperature is not only a sensitive indicator of climate change and an important prerequisite for mastering the law of climate change, but also a direct input parameter of many models, which has been widely used in many fields, such as meteorology, climate, environmental ecology, hydrology and so on. With the deepening and refinement of Geosciences and related fields, there is an urgent need for all weather LST based on satellite remote sensing. The generation principle of this dataset is a satellite thermal infrared remote sensing reanalysis data integration method based on a new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. The method makes full use of the high-frequency and low-frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data, and finally reconstructs a high-quality all-weather land surface temperature data set. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST is used as reference, the mean deviation (MBE) of the data set is 0.08k to 0.16k, and the standard deviation of deviation (STD) is 1.12k to 1.46k. Compared with the daily 1km AATSR LST product released by ESA, the MBE and STD of the product are -0.21k to 0.25k and 1.27k to 1.36k during the day and night. Based on the measured data of 15 stations in Heihe River Basin, Northeast China, North China and South China, the test results show that the MBE is -0.06k to -1.17k, and the RMSE is 1.52k to 3.71k, and there is no significant difference between clear sky and non clear sky. The time resolution of this data set is twice a day, the spatial resolution is 1km, and the time span is from 2000 to 2021; The spatial scope includes the main areas of China's land (including Hong Kong, Macao and Taiwan, excluding the islands in the South China Sea) and the surrounding areas (72 ° E-135 ° E,19 ° N-55 ° N)。 This dataset is abbreviated as trims LST (thermal and reality integrating modem resolution spatial sealing LST) for users to use. It should be noted that the spatial subset of trims LST, trims lst-tp (1 km daily land surface temperature data set in Western China, trims lst-tp; 2000-2021) V2) has also been released in the national Qinghai Tibet Plateau scientific data center to reduce the workload of data download and processing for relevant users.
ZHOU Ji, ZHANG Xiaodong, TANG Wenbin, DING Lirong, MA Jin , ZHANG Xu
The dataset include ground-based passive microwave brightness temperature, multi-angle brightness temperature, ten-minute 4-component radiation and snow temperature, daily snow pit data and hourly meteorological data observed at Altay base station(lon:88.07、lat: 44.73)from November 27, 2015 to March 26, 2016. Daily snow pit parameters include: snow stratification, stratification thickness, density, particle size, temperature. These data are stored in five NetCDF files: TBdata. nc, TBdata-multiangle. nc, ten-minute 4 component radiation and snow temperature. nc, hourly meteorological and soil data. nc and daily snow pit data.nc. TBdata. nc is brightness temperature at 3 channels for both polarizations automatically collected by a six-channel dual polarized microwave radiometer RPG-6CH-DP. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. TBdata-multiangle.nc is 7 groups of multi-angle brightness temperatures at 3 channels for both polarizations. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. The ten-minute 4 component radiation and snow temperature.nc contains 4 component radiation and layered snow temperatures. The contents include Year, month, day, hour, minute, SR_DOWN, SR_UP, LR_DOWN, LR_UP, T_Sensor, ST_0cm, ST_5cm, ST_15cm, ST_25cm, ST_35cm, ST_45cm, ST_55cm. The hourly meteorological and soil data.nc contains hourly weather data and layered soil data. The contents include Year, month, day, hour, Tair, Wair, Pair, Win, SM_10cm, SM_20cm, Tsoil_5cm, Tsoil_10cm, Tsoil_15 cm, Tsoil_20cm. The daily snow pit data.nc. is manual snow pit data. The observation time was 8:00-10:100 am local time. The contents include Year, month, day, snow depth, thickness_layer1, thickness_layer2, thickness_layer3, thickness_layer4, thickness_layer5, thickness_layer6, Long_layer1, Short_layer1, Long_layer2, Short_layer2, Long_layer3, Short_layer3, Long_layer 4, Short_layer4, Long_layer5, Short_layer5, Long_layer6, Short_layer 6, Stube, Snow shovel_0-10, Snow shovel _10-20, Snow shovel _20-30, Snow shovel _30-40, Snow shovel _40-50, Snow fork_5, Snow fork _10, Snow fork _15, Snow fork_20, Snow fork_25, Snow fork_30, Snow fork_35, Snow fork_40, Snow fork_45, Snow fork_50, shape1, shape2, shape3, shape4, shape5,
DAI Liyun
The Qinghai Tibet Plateau is a sensitive region of global climate change. Land surface temperature (LST), as the main parameter of land surface energy balance, characterizes the degree of energy and water exchange between land and atmosphere, and is widely used in the research of meteorology, climate, hydrology, ecology and other fields. In order to study the land atmosphere interaction over the Qinghai Tibet Plateau, it is urgent to develop an all-weather land surface temperature data set with long time series and high spatial-temporal resolution. However, due to the frequent cloud coverage in this region, the use of existing satellite thermal infrared remote sensing land surface temperature data sets is greatly limited. Compared with the previous version released in 2019, Western China Daily 1km spatial resolution all-weather land surface temperature data set (2003-2018) V1, this data set (V2) adopts a new preparation method, namely satellite thermal infrared remote sensing reanalysis data integration method based on new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. This method makes full use of the high frequency and low frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST was used as the reference value, the mean deviation (MBE) of the data set in daytime and nighttime was -0.28 K and -0.29 K respectively, and the standard deviation (STD) of the deviation was 1.25 K and 1.36 K respectively. The test results based on the measured data of six stations in the Qinghai Tibet Plateau and Heihe River Basin show that under clear sky conditions, the data set is highly consistent with the measured LST in daytime / night, and its MBE is -0.42-0.25 K / - 0.35-0.19 K; The root mean square error (RMSE) was 1.03 ~ 2.28 K / 1.05 ~ 2.05 K; Under the condition of non clear sky, the MBE of this data set in daytime / night is -0.55 ~ 1.42 K / - 0.46 ~ 1.27 K; The RMSE was 2.24-3.87 K / 2.03-3.62 K. Compared with the V1 version of the data, the two kinds of all-weather land surface temperature show the characteristics of seamless (i.e. no missing value) in the spatial dimension, and in most areas, the spatial distribution and amplitude of the two kinds of all-weather land surface temperature are highly consistent with MODIS land surface temperature. However, in the region where the brightness temperature of AMSR-E orbital gap is missing, the V1 version of land surface temperature has a significant systematic underestimation. The mass of trims land surface temperature is close to that of V1 version outside AMSR-E orbital gap, while the mass of trims is more reliable inside the orbital gap. Therefore, it is recommended that users use V2 version. The time span of this data set is from 2000 to 2021 and will be updated continuously; The time resolution is twice a day (corresponding to the two transit times of aqua MODIS in the daytime and at night); The spatial resolution is 1 km. In order to facilitate the majority of colleagues to carry out targeted research around the Qinghai Tibet Plateau and its adjacent areas, and reduce the workload of data download and processing, the coverage of this data set is limited to Western China and its surrounding areas (72 ° E-104 ° E,20 ° N-45 ° N)。 Therefore, this dataset is abbreviated as trims lst-tp (thermal and reality integrating modem resolution spatial seamless LST – Tibetan Plateau) for user's convenience.
ZHOU Ji, ZHANG Xiaodong, TANG Wenbin, DING Lirong, MA Jin , ZHANG Xu
This dataset includes component temperatures measured by the thermal imager at the Mixed Forest and Sidaoqiao stations between 23 July and 18 August, 2014. The Mixed Forest (101.1335 °E, 41.9903 °N, 874 m.a.s.l.) and Sidaoqiao (101.1374 °E, 42.0012 °N, 873 m.a.s.l.) stations were located in the downstream of the Heihe River basin, Dalaihubu Town, Ejin Banner, Inner Mongolia. At the Mixed Forest station, a Testo 890-2 thermal imager (Testo Inc., Germany) with a resolution of 640 × 480 pixels was employed to acquire brightness temperature images. The imager was manually operated from a 10-m height platform of the tower between 10:00-16:00 (China Standard Time, CST) with an observation interval of 1-h on cloudless days. On August 4th observations were acquired between 11:00 and 17:00 at an interval of 10-min to match observations acquired with an airborne TIR imager. The ground based imager was pointed to five viewing directions (southeast-SE, east-E, northeast-NE, northwest-NW, and southwest-SW) and was inclined 25°–45° below the horizon depending on viewing direction. At Sidaoqiao station, a Testo 875-2i imager (Testo Inc., Germany) with a resolution of 160 × 120 pixels was manually operated from a 10-m high platform to acquire brightness temperature images in directions SW, SE, NE, and NW. Depending on the targets in each viewing direction, the imager was inclined to 30°–45° below the horizon. Observations at Sidaoqiao and Mixed Forest stations were almost synchronous. Furthermore, visible images were taken simultaneously with the aforementioned two TIR imagers (2048 × 1536 pixels for Testo 890-2 and 640 × 480 pixels for Testo 875-2i).
ZHOU Ji, LI Mingsong , MA Jin
This dataset includes component temperatures measured by the thermal infrared (TIR) radiometers at the Mixed Forest and Sidaoqiao stations between 22 July, 2014 and 19 July, 2016. The Mixed Forest (101.1335 °E, 41.9903 °N, 874 m.a.s.l.) and Sidaoqiao (101.1374 °E, 42.0012 °N, 873 m.a.s.l.) stations were located in the downstream of the Heihe River basin, Dalaihubu Town, Ejin Banner, Inner Mongolia. At the Mixed Forest station, two TIR radiometers (SI-111, Apogee Instruments Inc., USA) connected to a data logger (CR800, Campbell Scientific Inc., USA) measured component temperatures of the sunlit canopy and shaded canopy. TIR radiometers were mounted horizontally at 5 m height on iron rods just south and north of a tree and pointed to its canopy. The distance from the sensor to the canopy was ~1 m. At the Sidaoqiao station, two SI-111 TIR radiometers connected to a CR800 data logger measured component temperatures of the soil and shrub. The first sensor pointed from 2 m height under a viewing zenith angle of 45° to bare soil; the second sensor was mounted at 1-m height and pointed horizontally into the shrub canopy.
ZHOU Ji, LI Mingsong , MA Jin
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn