Precipitation over the Tibetan Plateau (TP) known as Asia's water tower plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP that features complex terrain and the harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) data set was generated at a daily timescale and a spatial resolution of 0.1° across the TP for the 1998‒2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root mean squared error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow rivers in the TP. The MSP achieved the best Nash-Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004‒2014. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high quality precipitation data for hydrological research. The latitude and longitude of the left bottom corner across the TP, the number of rows and columns, and grid cells information are all included in each ASCII file.
HONG Zhongkun , LONG Di
The data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation and test carried out in Liupanshan area during 2021. Liupanshan scientific research is carried out in Dawan station, Jingyuan station, Liupanshan station, Longde station, etc. Dawan station is mainly equipped with cfl-06 wind profile radar, ht101 cloud radar, mrr-2 micro rain radar, dsg5 raindrop spectrometer, three-dimensional anemometer, C12 laser cloud altimeter. Jingyuan station is mainly equipped with qfw-6000 microwave radiometer, hmb-kps cloud radar, dsg5 raindrop spectrometer Cl51 laser cloud altimeter. Liupanshan station is mainly equipped with ht101 cloud radar, mrr-2 micro rain radar, Ott laser raindrop spectrometer, cloud condensation nodule (CCN) counter, three-dimensional anemometer, FM120 droplet spectrometer and C12 laser cloud altimeter. Longde station is mainly equipped with rpg-hatpro-g4 microwave radiometer, cfl-06 wind profile radar, ht101 Cloud Radar, mrr-2 micro rain radar Ott laser raindrop spectrometer, C12 laser cloud altimeter. Meanwhile automatic weather station, iron tower (Shangpu), X-band all solid-state dual polarization Doppler Weather Radar (Pengyang County), gradient station and other observations were done. It can be used to study the impact of the eastward movement of the plateau system on the downstream, and to reveal the impact of the atmospheric boundary layer and free atmospheric exchange process on aerosols, clouds Fog and precipitation and their interaction.
FU Danhong
The data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation and test carried out in Sanjiangyuan area during 2021. The scientific research of Sanjiangyuan mainly focuses on Advanced Air King aircraft observation. The airborne observation system includes aerosol, cloud particle spectrometer and imager observation. The observation elements include precipitation particle concentration and image of IP probe, cloud particle concentration and image of CIP probe, cloud and aerosol particle data of CAS probe and Hotwire_ LWC probe liquid water data, CAPS Summary aerosol, cloud and precipitation comprehensive data, AIMMS probe conventional meteorological elements, PCASP -100 probe aerosol particle data. Ground observation includes raindrop spectrometer, microwave radiometer and X-band radar. Raindrop spectrometer mainly observes equivalent volume diameter and particle falling speed. Microwave radiometer mainly observes temperature, humidity, water vapor and liquid water. And X-band radar mainly observes intensity, velocity and spectral width. It can provide data support for the study of the impact of westerly monsoon synergy on the cloud precipitation process of Sanjiang source.
FU Danhong
This data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation test carried out on the South and north slopes of Qilian Mountains during 2020. The air observation is mainly conducted by the king aircraft in the air. The ground investigation includes automatic weather station, raindrop spectrometer, microwave radiometer, Cloud Radar, sounding second data, etc. The observation elements of automatic weather station include air temperature, air pressure, humidity Wind direction, wind speed, precipitation. The observation elements of raindrop spectrometer include particle spectrum, precipitation intensity, etc. The observation elements of microwave radiometer are atmospheric temperature and humidity profiles. The observation elements of cloud Radar are mainly fixed-point vertical observation data. Meanwhile aerosol, rain, hail and soil samples are collected. It can provide data support for revealing the influence of westerly monsoon on cloud precipitation process and atmospheric water cycle in Qilian Mountains.
FU Danhong
The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.
XU Wenqiang
The dataset of the drop spectrometer observations was obtained at an interval of 30 seconds in the cold region hydrology experimental area from Mar. 14 to Apr. 14, 2008. The site was chosen in A'rou (N39.06°, E100.44°, 3002m), Qilian county, Qinghai province. The data mainly included the raindrop grain size and the terminal velocity. Besides, dual polarized radar (X-band) parameters such as ZDR and KDR could be further developed based on those data. The observation was carried out within an area of 5400mm^2; the liquid grain diameter was from 0.2-5mm, and the solid grain diameter was from 0.2-25mm.
CHU Rongzhong, ZHAO Guo, HU Zeyong, ZHANG Tong, JIA Wei
The dataset of the drop spectrometer (PARSIVEL) observations was obtained at an interval of 30 seconds in the arid region hydrology experiment area from May 18 to Jul. 5, 2008. The site was chosen in Xiaoman township (38.86°N, 100.41°E, 1515m), Ganzhou district, Zhangye city, Gansu province. The data mainly included the raindrop grain size and the terminal velocity. Besides, dual polarized radar (X-band) parameters such as ZDR and KDR could be further developed based on those data. The sampling area of PARSIVEL was 5400mm^2; the liquid grain diameter was from 0.2-5mm, and the solid grain diameter was from 0.2-25mm.
CHU Rongzhong, ZHAO Guo, HU Zeyong, ZHANG Tong, JIA Wei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn