Based on the data of GF-1 and GF-2 in China, the freeze-thaw disaster distribution data of Qinghai Tibet project corridor is produced by using the deep learning classification method and manual visual interpretation and correction. The geographical range of the data is 40km along the Xidatan Anduo section of Qinghai Tibet highway. The data include the distribution data of thermokast lakes and the distribution data of thermal melting landslides. The dataset can provide data basis for the research of freeze-thaw disaster and engineering disaster prevention and reduction in Qinghai Tibet engineering corridor. The spatial distribution of freezing and thawing disasters within 40km along the Xidatan-Anduo section of Qinghai Tibet highway is self-made based on the domestic GF-2 image data. Firstly, the deep learning method is used to extract the mud flow terrace block from GF-2 data; Then, ArcGIS is used for manual editing.
NIU Fujun, LUO Jing LUO Jing
Water cover is one of the basic parameters of water cycle and energy balance. Based on the AVHRR daily reflectance time series from 1982 to 2020, this data set has produced 39 year long-term daily water body mapping products (including water body icing information) on the Qinghai Tibet Plateau. This dataset contains 39 folders, named after the year (from 1982 to 2020). Each folder contains 365 / 366 GeoTIFF files, and each file contains two bands: (1) water mapping band (waterlayer); (2) Quality control information band (QC). This product provides data support for remote sensing monitoring of water bodies in the Qinghai Tibet Plateau.
JI Luyan
Monthly average daytime as well as nighttime data of the Universal Thermal Climate Index (UTCI) for 354 cities in China. The time range of the data is from January 2012 to December 2021, with a temporal resolution of month-by-month. The spatial resolution is 1 km. The data is mainly based on the MYD07 atmosphere profile dataset and MYD11 land surface temperature dataset provided by MODIS, and incorporates the wind speed provided by ERA5 reanalysis data. The urban boundary is demarcated according to the 2018 data provided by Global Urban Boundary-GUB dataset. All the data are resampled to 1 km, in order to maintain the uniform spatial resolution. With the rapid urbanization and global warming, the data are useful for studying the spatiotemporal patterns of urban thermal comfortable and related analysis.
王 晨光 , WANG Chenguang, WANG Chenguang, 占 文凤 ZHAN Wenfeng
Based on the Sentinel-2 and Landsat 5/7/8 multispectral instrument imageries combined with in-situ measured hydrological data, bankfull river geometry of six major exorheic river basins of the Qinghai-Tibet Plateau (the upper Yellow River, upper Jinsha River, Yalong River, Lantsang River, Nu River and Yalung Zangbo River) are presented. River surface of six mainstreams and major tributaries are included. For each river basin, two types of rivers are included: connected and disconnected rivers. Format of the dataset is .shp exported from the ArcGIS 10.5. Three products are included in the dataset: one original product (bankfull river surface dataset) and two derived products (bankfull river width dataset and bankfull river surface area dataset with a 1 km river length interval). These three products are in three folders. The first folder, “1-Bankfull River Surface”, contains river surface vectors for six river basins in the .shp file. The second folder, “2-Bankfull River Width”, contains bankfull river widths and corresponding coordinates with a 1 km-step river length for six mainstreams and some connected tributaries in .xlsx format. The river width vectors in the .shp files are also provided in the second folder. The third folder, “3-Bankfull River Surface Area”, contains bankfull river surface areas and corresponding coordinates with a 1 km-step river length for six mainstreams and some connected tributaries in .xlsx format. Three Supplementary Files are included: Supplementary File 1, tables and figures related to the dataset; Supplementary File 2, used for river surface extraction based on GEE platform; Supplementary File 3, used for river width extraction based on Matlab. The provided planform river hydromorphology data can supplement global hydrography datasets and effectively represent the combined fluvial geomorphology and geological background in the study area.
LI Dan , XUE Yuan , QIN Chao , WU Baosheng , CHEN Bowei , WANG Ge
We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
Fractional Vegetation Cover (FVC) refers to the percentage of the vertical projected area of vegetation to the total area of the study area. It is an important indicator to measure the effectiveness of ecological protection and ecological restoration. It is widely used in the fields of climate, ecology, soil erosion and so on. FVC is not only an ideal parameter to reflect the productivity of vegetation, but also can play a good role in evaluating topographic differences, climate change and regional ecological environment quality. This research work is mainly to post process two sets of glass FVC data, and give a more reliable vegetation coverage of the circumpolar Arctic Circle (north of 66 ° n) and the Qinghai Tibet Plateau (north of 26 ° n to 39.85 °, east longitude 73.45 ° to 104.65 °) in 2013 and 2018 through data fusion, elimination of outliers and clipping.
YE Aizhong
NDVI reflects the background effects of plant canopy, such as soil, wet ground, snow, dead leaves, roughness, etc., and is related to vegetation cover. It is one of the important parameters to reflect the crop growth and nutrient information. According to this parameter, the N demand of crops in different seasons can be known, which is an important guide to the reasonable application of N fertilizer. Correct NDVI (C-NDVI) is the value of NDVI after excluding the influence of climate elements (temperature, precipitation, etc.) on NDVI. Taking precipitation as an example, studies on the lag effect of precipitation on vegetation growth show that the lag time of precipitation effects varies in different regions due to differences in vegetation composition and soil types. In this study, we post-processed the MODIS NDVI data and firstly correlated the NDVI value of the current month with the precipitation of the current month, the average value of the precipitation of the current month with that of the previous month, and the average value of the precipitation of the current month with that of the previous two months to determine the optimal lag time. The NDVI was regressed on precipitation and air temperature to obtain the correlation coefficients, and then the corrected NDVI values were calculated by the difference between the MODIS NDVI and the NDVI regressed on climate factors. We corrected NDVI using climate data to give reliable vegetation correction indices for the circum-Arctic Circle (range north of 66°N) and the Tibetan Plateau (range 26°N to 39.85°N and 73.45°E to 104.65°E) for 2013 and 2018. The spatial resolution of the data is 0.5 degrees and the temporal resolution is monthly values.
YE Aizhong
The dataset of landuse types in Qilian Mountains National Park in 1985 is a vector dataset based on the remote sensing monitoring dataset of the current landuse situation in China by CAS, which is obtained through cropping and splicing operations. The data production production is vector data generated by manual visual interpretation using Landsat TM/ETM remote sensing images as the main data source. 3 datasets for 2000-2020 are raster datasets with 30m resolution based on GlobeLand30 global 30m ground cover data, obtained through mask extraction and other operations. The land use types of all datasets include 10 primary types of cropland, forest, shrubland, grassland, wetland, water, tundra, impervious surface, bareland, glacier, and permanent snow. The data products can detect most of the land cover changes caused by human activities, which is very important in practical applications. This data can be used to analyze the historical land use types in the Qilian Mountains region and to analyze the changes of land use types in the Qilian Mountains region in combination with the current landuse type data.
NIAN Yanyun
The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
This dataset includes the maximum normalized vegetation index (NDVI) data from 1982 to 2015, the maximum enhanced vegetation index (EVI) data from 2000 to 2020, and the land cover change (LUCC) data from 2001 to 2019 in the China-Mongolia-Russia Economic Corridor (CMREC). Among these, NDVI data was extracted from GIMMS satellite data with a resolution of 8 km; EVI and LUCC data were extracted from MODIS satellite data (MOD13A3 and MCD12C1) with a resolution of 1 km and 5 km, respectively. The dataset filters the outliers or missing values in the original data, which is of higher quality than the source data. Meanwhile, we adopted the maximum value composite (MVC) method to process NDVI and EVI data to obtain the annual maximum NDVI and EVI, which can better reflect the vegetation distribution and change in CMREC over the past several decades. The spatio-temporal changes of vegetation and land use extracted from satellite remote sensing data will provide scientifical guidance for the risk control and prevention of the ecological environment change in CMREC.
ZHANG Xueqin
This dataset consists of four files including (1) Lake ice thickness of 16 large lakes measured by satellite altimeters for 1992-2019 (Altimetric LIT for 16 large lakes.xlsx); (2) Daily lake ice thickness and lake surface snow depth of 1,313 lakes with an area > 50 km2 in the Northern Hemisphere modeled by a one-dimensional remote sensing lake ice model for 2003-2018 (in NetCDF format); (3) Future lake ice thickness and surface snow depth for 2071-2099 modeled by the lake ice model with a modified ice growth module (table S1.xlsx); (4) A lookup table containing lake IDs, names, locations, and areas. This daily lake ice and snow thickness dataset could provide a benchmark for the estimation of global lake ice and snow mass, thereby improving our understanding of the ecological and economical significance of freshwater ice as well as its response to climate change.
LI Xingdong, LONG Di, HUANG Qi, ZHAO Fanyu
The North China Plain (NCP), with an area of ~140,000 square kilometers, is among the most important agricultural producing bases in China. In addition to canal irrigation with surface water from the Yellow River, the NCP also needs much groundwater for intensive irrigation. Spatiotemporally continuous and daily evapotranspiration (ET) estimates of high spatial resolution could be valuable for improving our understanding of agricultural water consumption across the NCP, and also for improving water use efficiency for better agricultural water resource management practices over similar regions globally. This ET data set at 1 km spatial resolution and daily timescale across the NCP from Jan 2008 to Dec 2019 was generated using two source energy balance model (TSEB) and data fusion. The accuracy is generally comparable and even higher than published results, with our ET data set featuring spatiotemporal continuity and high spatial resolution for a decade. Furthermore, this data set and associated approaches are valuable for performing daily, monthly, seasonal, interannual, and trend analyses of ET in the NCP and similar regions globally.
ZHANG Caijin , LONG Di
Precipitation over the Tibetan Plateau (TP) known as Asia's water tower plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP that features complex terrain and the harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) data set was generated at a daily timescale and a spatial resolution of 0.1° across the TP for the 1998‒2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root mean squared error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow rivers in the TP. The MSP achieved the best Nash-Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004‒2014. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high quality precipitation data for hydrological research. The latitude and longitude of the left bottom corner across the TP, the number of rows and columns, and grid cells information are all included in each ASCII file.
HONG Zhongkun , LONG Di
Aiming at the 179000 km2 area of the pan three rivers parallel flow area of the Qinghai Tibet Plateau, InSAR deformation observation is carried out through three kinds of SAR data: sentinel-1 lifting orbit and palsar-1 lifting orbit. According to the obtained InSAR deformation image, it is comprehensively interpreted in combination with geomorphic and optical image features. A total of 949 active landslides below 4000m above sea level were identified. It should be noted that due to the difference of observation angle, sensitivity and observation phase of different SAR data, there are some differences in the interpretation of the same landslide with different data. The scope and boundary of the landslide need to be corrected with the help of ground and optical images. The concept of landslide InSAR recognition scale is different from the traditional spatial resolution and mainly depends on the deformation intensity. Therefore, some landslides with small scale but prominent deformation characteristics and strong integrity compared with the background can also be interpreted (with SAR intensity map, topographic shadow map and optical remote sensing image as ground object reference). The minimum interpretation area can reach several pixels. For example, a highway slope landslide with only 4 pixels is interpreted with reference to the highway along the Nujiang River.
YAO Xin
The image information data of Beichuan area in Sichuan Province, Ludian area in Yunnan Province and Bijie area in Guizhou Province can be used to construct the interpretation and identification marks of remote sensing images of mountain seismic crack and collapse, reveal the general form of mountain seismic crack and collapse, and evaluate the risk level of specific mountain seismic crack and collapse; The data can be combined with DEM data to mine the development mechanism of mountain seismic crack and collapse. On this basis, we can further study and improve the intelligent identification theory and formation mechanism of mountain seismic crack and collapse, so as to provide indicative significance for looking for the material source of other similar types of seismic crack and collapse. Some of the original data of the project can be used to fully understand the risk of earthquake cracking and collapse in Ludian area.
HAN Zheng
The dataset contains the continuous daily lake surface temperature of 160 Lakes (with an area of more than 40km2) in the Tibetan Plateau from 1978 to 2017. Firstly, an semi-physical lake model (air2water) based on energy balance was improved to realize the continuous simulation of lake surface temperature even during ice age. The impoved model was calibrated by lake surface temperature from MOD11A1 product. The correlation between the dataset and in-situ lake surface temperature of four lakes is higher than 0.9, and the root mean square errors are less than 2.5 ℃. The data set provides data support for understanding the water and heat balance , the process of aquatic ecosystem and its response to climate change of lakes in the Tibetan Plateau.
GUO Linan , WU Yanhong, ZHENG Hongxing , ZHANG Bing , WEN Mengxuan
This data set is a code file set of TCA (triple collision analysis) algorithm, which is used to generate the global daily-scale soil moisture fusion dataset from 2011 to 2018.
XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, JIA Li , HU Guangcheng
The normalized difference vegetation index (NDVI) can accurately reflect the surface vegetation coverage. At present, NDVI time series data based on spot / vegetation and MODIS satellite remote sensing images have been widely used in the research of vegetation dynamic change monitoring, land use / cover change detection, macro vegetation cover classification and net primary productivity estimation in various scale regions. The spatial distribution data set of 1km vegetation index (NDVI) in Southeast Tibet is in MODIS( https://ladsweb.modaps.eosdis.nasa.gov/ )Based on the 16 day 1km surface reflectance data (mod13), the monthly vegetation index data set since 2000 is generated by the maximum synthesis method. The data set effectively reflects the distribution and change of vegetation cover in Southeast Tibet on spatial and temporal scales. It has very important reference significance for the monitoring of vegetation change, the rational utilization of vegetation resources and other fields related to ecological environment. Monthly NDVI data is the maximum value of monthly NDVI data, and the data acquisition time is from February 2000 to December 2018. The downloaded data is in grid format with a spatial resolution of 1km.
WANG Hao
This data is the comprehensive monitoring data set of Nadi gully debris flow (2021) produced by automatic rainfall station, mud level monitor and line collision sensor. The above data collection points are nadigou debris flow monitoring points in Jiuzhaigou County scenic area, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province. The monitoring data are mainly analyzed by Sichuan Institute of land and space ecological restoration and geological disaster prevention and control. The instruments used include dd-zxcg-001 line collision sensor, dd-ylj-001 automatic rainfall station and dd-nwj-001 mud level monitor. The collection time is 2021.
ZHANG Qun
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn