Normalized Difference Vegetation Index (NDVI) has been widely used for monitoring vegetation. This dataset employed all available Landsat 5/7/8 data on the Qinghai-Tibetan Plateau (QTP) (> 100,000 scenes), and reconstructed high spatiotemporal NDVI time-series data (30-m and 8-d) during 2000-2020 on the TP (QTP-NDVI30) by using the MODIS-Landsat fusion algorithm (gap filling and Savitzky–Golay filtering;GF-SG). For the details of GF-SG, please refer to Chen et al. (2021). This dataset has been evaluated carefully. The quantitative assessments show that the reconstructed NDVI images have an average MAE value of 0.02, correlation coefficient of 0.96, and SSIM value of 0.94. We compared the reconstructed images in some typical areas with the PlanetScope 3-m images and found that the spatial details were well preserved by QTP-NDVI30. The geographic coordinate system of this dataset is GCS_WGS_84. The spatial range covers the vegetation area of the QTP, which is defined as the areas with average NDVI during July- September larger than 0.15.
CAO Ruyin , XU Zichao , CHEN Yang , SHEN Miaogen , CHEN Jin
The vegetation type map was created by the random forest (RF) classification approach, based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. According to vegetation characteristics, four types include alpine swamp meadow (ASM), alpine meadow (AM), alpine steppe (AS), and alpine desert (AD) were classified in this map. Based on a spatial resolution of 30 m, the map can provide more detailed vegetation information.
ZHOU Defu, ZOU Defu, ZOU Defu, Zhao Lin, ZHAO Lin, Liu Guangyue, LIU Guangyue, Du Erji, DU Erji, LI Zhibin , LI Zhibin, Wu Tonghua, WU Xiaodong, CHEN Jie CHEN Jie
The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.
XU Wenqiang
This vegetation water content data set is derived from the ground synchronous observation in the Luanhe River Basin soil moisture remote sensing experiment, including 55 sampled plots.The vegetation types involved in these sampled plots include grass, corn, potatoes, naked oats and carrots. The data measurement time is from September 13, 2018 to September 26, 2018.
ZHENG Xingming, JIANG Tao
This data set is hyperspectral observation data of typical vegetation along Sichuan Tibet Railway in September 2019, using the airborne spectrometer of Dajiang M600 resonon imaging system. Including the hyperspectral data observed in the grassland area of Lhasa in 2019, with its own latitude and longitude. The hyperspectral survey was mainly sunny. Before flight, whiteboard calibration was carried out; when data were collected, there was a target (that is, the standard reflective cloth suitable for the grass), which was used for spectral calibration; there were ground mark points (that is, letters with foam plates), and the longitude and latitude coordinates of each mark were recorded for geometric precise calibration. The DN value recorded by Hyperspectral camera of UAV can be converted into reflectivity by using Spectron Pro software. Hyperspectral data is used to extract spectral characteristics of different vegetation types, vegetation classification, inversion of vegetation coverage and so on.
ZHOU Guangsheng, JI Yuhe, LV Xiaomin, SONG Xingyang
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn