The Antarctic McMurdo Dry Valleys ice velocity product is based on the Antarctic Ice Sheet Velocity and Mapping Project (AIV) data product, which is post-processed with advanced algorithms and numerical tools. The product is mapped using Sentinel-1/2/Landsat data and provides uniform, high-resolution (60m) ice velocity results for McMurdo Dry Valleys, covering the period from 2015 to 2020.
JIANG Liming JIANG Liming JIANG Liming
Pine Island Glacier, Swett Glacier, etc. are distributed in the basins of the Antarctic Ice Sheet 21 and 22, which is one of the areas with the most severe melting in the Southwest Antarctica. This dataset first uses Cryosat-2 data (August 2010 to October 2018) to establish a plane equation in each regular grid, taking into account terrain items, seasonal fluctuations, backscattering coefficients, wave front width, lifting rails and other factors, and calculates the elevation change of ice cover surface in the grid through least square regression. In addition, we used ICESat-2 data (October 2018 to December 2020) to calculate the surface elevation change during the two periods by obtaining the elevation difference at the intersection of satellite lifting orbits in each regular grid. The spatial resolution of surface elevation change data in two periods is 5km × 5km, the file format is GeoTIFF, the projection coordinate is polar stereo projection (EPSG 3031), and it is named by the name of the satellite altimetry data used. The data can be opened using ArcMap, QGIS and other software. The results show that the average elevation change rate of the region from 2010 to 2018 is -0.34 ± 0.08m/yr, which belongs to the area with severe melting. The annual average elevation change rate from October 2018 to November 2020 is -0.38 ± 0.06m/yr, which is in an intensified state compared with CryoSat-2 calculation results.
YANG Bojin , HUANG Huabing , LIANG Shuang , LI Xinwu
Glacier surface albedo is a key parameter in the process of glacier mass and energy balance. The data include annual mean glacier surface albedo and annual minimum glacier surface albedo for each year of the 2000-2020 ablation period (June-August) in the High Mountain Asia. Based on the MODIS 500m resolution daily snow albedo products (including MOD10A1 and MYD10A1), firstly, mean-synthesis was applied to the morning star data MOD10A1 and afternoon star data MYD10A1, followed by interpolation and null-filling using mean-filtering for data within a ±2 day window, and finally based on the minimum and mean methods to obtain the annual mean albedo and annual minimum albedo for glaciers in High Mountain Asia were obtained based on the minimum and mean methods. Compared to the original data, the accuracy and coverage of the data are greatly improved. It can provide ice surface albedo input data for studying the relationship between glacier albedo and matss balance and for glacier models.
XIAO Yao
We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
This dataset includes the Antarctica ice sheet mass balance estimated from satellite gravimetry data, April 2002 to December 2019. The satellite measured gravity data mainly come from the joint NASA/DLR mission, Gravity Recovery And Climate Exepriment (GRACE, April 2002 to June 2017), and its successor, GRACE-FO (June 2018 till present). Considering the ~1-year data gap between GRACE and GRACE-FO, we extra include gravity data estimated from GPS tracking data of ESA's Swarm 3-satellite constellation. The GRACE data used in this study are weighted mean of CSR, GFZ, JPL and OSU produced solutions. The post-processing includes: replacing GRACE degree-1, C20 and C30 spherical harmonic coefficients with SLR estimates, destriping filtering, 300-km Gaussian smoothing, GIA correction using ICE6-G_D (VM5a) model, leakage reduction using forward modeling method and ellipsoidal correction.
C.K. Shum
The Tibetan Plateau Glacier Data –TPG2017 is a glacial coverage data on the Tibetan Plateau from selected 210 scenes of Landsat 8 Operational Land Imager (OLI) images with 30-m spatial resolution from 2013 to 2018, among of which 90% was in 2017 and 85% in winter. Therefore, 2017 was defined as the reference year for the mosaic image. Glacier outlines were digitized on-screen manually from the 2017 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2017. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2017 if they were identifiable on images in all other three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.
YE Qinghua
This is the 1976, 1991, 2000, and 2010 vector data set of glaciers and glacial lakes in the Boqu Basin in Central Himalaya based on Landsat satellite images. The data source is from Landsat remote images. 1976: LM21510411975306AAA05, LM21510401976355AAA04 1991: LT41410401991334XXX02, LT41410411991334XXX02 2000: LE71410402000279SGS00, LE71400412000304SGS00, LE71410402000327EDC00, LE71410412000327EDC00 2010: LT51400412009288KHC00, LT51410402009295KHC00, LT51410412009311KHC00, LT51410402011237KHC00. The boundaries of glaciers and glacial lakes are extracted manually from the various remote sensing images. The extraction error of the boundaries of glaciers and glacial lakes is estimated to be 0.5 pixels. Data file: Glacial_1976: Glacier vector data in 1976 Glacial_1991: Glacier vector data in 1991 Glacial_2000: Glacier vector data in 2000 Glacial_2010: Glacier vector data in 2010 Glacial_Lake_1976: Glacial lake vector data in 1976年 Glacial_Lake_1991: Glacial lake vector data in 1991 Glacial_Lake_2000: Glacial lake vector data in 2000 Glacial_Lake_2010: Glacial lake vector data in 2010 The glacial lake vector data fields include Number, name, latitude and longitude, altitude, area, orientation, type of glacial lake, length, width, and distance from the glacier.
WANG Weicai
The Tibetan Plateau Glacier Data –TPG2013 is a glacial coverage data on the Tibetan Plateau around 2013. 128 Landsat 8 Operational Land Imager (OLI) images were selected with 30-m spatial resolution, for comparability with previous and current glacier inventories. Besides, about 20 images acquired in 2014 were used to complete the full coverage of the TP. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 2013. Glacier outlines were digitized on-screen manually from the 2013 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. [To minimize the effects of snow or cloud cover on glacierized areas, high-resolution (30 m spatial resolution and 4-day repetition cycle) images were also used for reference in glacier delineation from the Chinese satellites HJ-1A and HJ-1B, which were launched on Sep.6th 2008. Both carried as payload two 4-band CCD cameras with swath width 700 km (360 km per camera). All HJ-1A/1B data in 2012, 2013 and 2014 (65 scenes, Fig.S1, Table S1) were from China Centre for Resources Satellite Data and Application (CRESDA; http://www.cresda.com/n16/n92006/n92066/n98627/index.html). Each scene was orthorectified with respect to the 30m-resolution digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) and Landsat images.] The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. Topographic maps from the 1970s and all available satellite images (including Google EarthTM imagery and HJ-1A/1B satellite data) were used as base reference data. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2013. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2013 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.
YE Qinghua
The Tibetan Plateau Glacial Data -TPG1976 is a glacial coverage data on the Tibetan Plateau in the 1970s. It was generated by manual interpretation from Landsat MSS multispectral image data. The temporal coverage was mainly from 1972 to 1979 by 60 m spatial resolution. It involved 205 scenes of Landsat MSS/TM. There were 189 scenes(92% coverage on TP)in 1972-79,including 116 scenes in 1976/77 (61% of all the collected satellite data).As high quality of MSS data is not accessible due to cloud and snow effects in the South-east Tibetan Plateau, earlier Landsat TM data was collected for usage, including 14 scenes of 1980s(1981,1986-89,which covers 6.5% of TP) and 2 scenes in 1994(by 1.5% coverage on TP).Among all satellite data,77% was collected in winter with the minimum effects of cloud and seasonal snow. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 1976. Glacier outlines were digitized on-screen manually from the 1976 image mosaic, relying on false-colour image composites (MSS: red, green and blue (RGB) represented by bands 321; TM: RGB by bands 543), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG1976. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG1976 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 6.4% due to the 60 m spatial resolution images.
YE Qinghua, WU Yuwei
The Tibetan Plateau Glacial Data –TPG2001 is a glacial coverage data on the Tibetan Plateau in around 2000 from 150 scenes of Landsat7 TM/ETM+ images by 30 m spatial resolution. The selected Landsat7 TM/ETM+ images were within the period between 1999 and 2002, including 61 scenes (41%) in 2001 and 47 scenes (31%) in 2000. Among all the images, 71% was taken in winter. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 2001. Glacier outlines were digitized on-screen manually from the 2001 image mosaic, relying on false-colour image composites (RGB by bands 543), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. Topographic maps from the 1970s and all available satellite images (including Google EarthTM imagery) were used as base reference data. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2001. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2001 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.8%.
YE Qinghua, WU Yuwei
Under the background of global warming, mountain glaciers worldwide are facing strong ablation and retreat, but from existing field observations, it is found that most of the glaciers in the Karakorum region remain stable or are advancing, which is called the "Karakorum anomaly". Glacier surface velocity is an important parameter for studying glacier dynamics and mass balance. Studying the temporal and spatial variation characteristics of glacier velocity in central Karakorum is significant for understanding the dynamic characteristics of the glacier in this region and its response to climate change. Four pairs of Landsat 7 ETM+ images acquired in 1999 to 2003 (images acquired on 1999.7.16, 2000.6.16, 2001.7.21, 2002.8.9, 2002.4.19, 2003.3.21) were selected; using the panchromatic band with a resolution of 15 m, each pair of images was accurately registered, and then cross-correlation calculations were then performed on each image pair after registration to obtain the surface velocity of the glacier in the central Karakorum region from 1999 to 2003. Due to the lack of velocity observation data in the study area, the accuracy of the ice flow results is estimated using the offset value of the stable region, and the surface velocity error of the glacier is approximately ±7 m/year. The glacier velocity data dates are from 1999 to 2003, with a temporal resolution of one year. They cover the central Karakorum region, with a spatial resolution of 30 m. The data are stored as a GeoTIFF file every year. For details regarding the data, please refer to the data description.
JIANG Liming
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn