Normalized Difference Vegetation Index (NDVI) has been widely used for monitoring vegetation. This dataset employed all available Landsat 5/7/8 data on the Qinghai-Tibetan Plateau (QTP) (> 100,000 scenes), and reconstructed high spatiotemporal NDVI time-series data (30-m and 8-d) during 2000-2020 on the TP (QTP-NDVI30) by using the MODIS-Landsat fusion algorithm (gap filling and Savitzky–Golay filtering;GF-SG). For the details of GF-SG, please refer to Chen et al. (2021). This dataset has been evaluated carefully. The quantitative assessments show that the reconstructed NDVI images have an average MAE value of 0.02, correlation coefficient of 0.96, and SSIM value of 0.94. We compared the reconstructed images in some typical areas with the PlanetScope 3-m images and found that the spatial details were well preserved by QTP-NDVI30. The geographic coordinate system of this dataset is GCS_WGS_84. The spatial range covers the vegetation area of the QTP, which is defined as the areas with average NDVI during July- September larger than 0.15.
CAO Ruyin , XU Zichao , CHEN Yang , SHEN Miaogen , CHEN Jin
The considerable amount of solid clastic material in the Yarlung Tsangpo River Basin (YTRB)) is one of the important components in recording the uplift and denudation history of the Tibet Plateau. Different types of unconsolidated sediments directly reflect the differential transport of solid clastic material. Revealing its spatial distribution and total accumulation plays an important value in the uplift and denudation process of the Tibet Plateau. The dataset includes three subsets: the type and spatial distribution of unconsolidated sediments in theYTRB, the thickness spatial distribution, and the quantification of total deposition. Taking remote sensing interpretation and geological mapping as the main technical method, the classification and spatial distribution characteristics of unconsolidated sediments in the whole YTRB (16 composite sub-basins) were comprehensively clarified for the first time. Based on the field measurement of sediment thickness, the total accumulation was preliminarily estimated. A massive amount of sediment is an important material source of landslide, debris flow and flood disasters in the basin. Finding out its spatial distribution and total amount accumulation not only has theoretical significance for revealing the key information recorded in the process of sediment source to sink, such as surface environmental change, regional tectonic movement, climate change and biogeochemical cycle, but also has important application value for plateau ecological environment monitoring and protection, flooding disaster warning and prevention, major basic engineering construction, and soil and water conservation.
LIN Zhipeng, WANG Chengshan , HAN Zhongpeng, BAI Yalige, WANG Xinhang, ZHANG Jian, MA Xinduo, HU Taiyu, ZHANG Chenjin
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the Biandukou foci experimental area on Oct. 17, 2007 during the pre-observation period. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:04 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners. Simultaneous with the satellite overpass, numerous ground data were collected: the soil temperature , volumetric soil moisture (cm^3/cm^3), soil salinity (s/m), soil conductivity (s/m) by the Hydra probe, the surface radiative temperature by the handheld infrared thermometer, gravimetric soil moisture, volumetric soil moisture, and soil bulk density by drying soil samples from the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Those provide reliable ground data for the development and validation of soil moisture, soil freeze/thaw algorithms and the forward model from active remote sensing approaches.
BAI Yunjie, CAO Yongpan, LI Xin, Wang Weizhen, WANG Xufeng
The dataset of ground truth measurement synchronizing with MODIS was obtained in the Linze grassland foci experimental area on Jun. 22, 2008. Simultaneous east-west ground measurements on the canopy temperature, the half-height temperature and the land surface radiative temperature were carried out by the hand-held infrared thermometer at intervals of 125m in 8 quadrates (2km×2km), No.1 quadrate (H01-H08) on Jun. 22, No.2 quadrate (H09-H16) on Jun. 23,No.3 quadrate (H17-H24) on Jun. 22, No.4 quadrat (H25-H32) on Jun. 23, No.5 quadrate (H33-H40) on Jun. 22, No.6 quadrate (H41-H48) on Jun. 23, No,7 quadrate (H49-H56) and No.8 quadrate (H57-H64) on Jun. 23. Data were archived in Excel format. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CHAO Zhenhua, NIAN Yanyun, WANG Xufeng, LIANG Wenguang
The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in the Linze station foci experimental area on Jun. 29, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) soil moisture (0-5cm) nine times by the cutting ring (50cm^3) along LY06 and LY07 strips, and once by the cutting ring method and once by ML2X Soil Moisture Tachometer in the six points of Wulidun farmland quadrates. The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature measured three times by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in LY06 and LY07 strips (98 sample points and repeated three times) and the Wulidun farmland quadrates (various points and repeated three times). Data were archived as Excel files. (3) maize canopy component temperature measured by the 5# handheld infrared thermometer (from Cold and Arid Regions Environmental and Engineering Research Institute) in Wulidun farmland quadrates. Six directions were measured, canopy backlighting and frontlighting, half height backlighting and frontlighting, the light and the shaded bareland, with each direction 20 measurements. (4) spectrum of maize, soil and soil with known moisture measured by ASD Spectroradiometer (350~2 500 nm) from BNU, and the reference board (40% before Jun. 15 and 20% hereafter) in Wulidun farmland quadrates. Raw spectral data were binary files , which were recorded daily in detail, and pre-processed data on reflectance (by ViewSpecPro) were archived as Excel.files (5) mltiangle maize spectrum measured by ASD Spectroradiometer (350~2 500 nm) from BNU, the reference board (40% before Jun. 15 and 20% hereafter), two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance and transmittivity were archived as text files (.txt). (6) LAI of maize measured by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in excel). (7) LAI of maize measured by LAI2000 in Wulidun farmland quadrates. Data educed from LAI2000 periodically were archived as text files (.txt) and marked with one ID. Raw data (table of word and txt) and processed data (Excel) were included. Besides, observation time, the observation method and the repetition were all archived. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
DONG Jian, YU Yingjie, BAI Yanfen, HAO Xiaohua, Qian Jinbo, SHU Lele, WANG Yang, XU Zhen
The dataset of ground truth measurements synchronizing with airborne WiDAS mission was obtained in the Linze grassland foci experimental area on Jul. 11, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. These simultaneous ground data were mainly the land surface temperature measured by the hand-held infrared thermometer in the reed plot A, the saline plots B and C, the alfalfa plot D and the barley plot E, the maximum of which were 120m×120m and the minimum were 30m×30m. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, CHAO Zhenhua, GE Chunmei, HU Xiaoli, HUANG Chunlin, LI Hongxing, LIU Chao, WU Yueru, SHEN Xinyi, YU Fan
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Linze station foci experimental area on Jul. 8, 2008. Observation items included: (1) soil moisture (0-5cm) measured by the cutting ring method (50cm^3) in P1 to P6 strips (17 sample points each). Photos were taken. The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature measured by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) from P1 to P6 strips. There are 34 sample points in total and each was repeated three times synchronizing with the airplane. Photos were taken. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
XIE Tingting, JIANG Hao, SONG Yi, BAI Yanfen, GAO Song, Qian Jinbo, SHU Lele, SONG Yi, XU Zhen, XIE Tingting, JIANG Hao, LI Shihua
The dataset of ground truth measurements synchronizing with ASTER was obtained in the Linze station foci experimental area on May 28, 2008. Observation items included: (1) soil moisture (0-5cm) measured once by the cutting ring method at the corner points of the 40 subplots of the west-east desert transit zone strip once by cutting ring method in the corner points of nine subplots of the north-south desert transit zone, once by the cutting ring method and once by ML2X Soil Moisture Tachometer in the center points of nine subplots of the farmland. The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature measured by the handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute which were both calibrated) in 40 subplots of the west-east desert transit zone strip (repeated 14-30 times), and nine subplots of the north-south desert transit zone strip (repeated 12-30 times). Data were archived as Excel files. (3) BRDF of maize and desert scrub measured by ASD Spectroradiometer (350~2 500 nm) from BNU, the 40% reference board , two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland quadrates and the desert transit zone strips. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance and transmittivity were archived as text files (.txt). (4) LAI measured by two methods in the the Wulidun farmland quadrates and Linze station quadrates. One is manual method. The LAI, plant height and the spacing of selected samples were measured by the ruler and the number of the sapmles in the quadrate were counted. Then the LAI can be calculated. The other method is LI-3100. Data were archived as Excel files.
Qian Jinbo, SONG Yi, WANG Zhixia, WANG Yang, PAN Xiaoduo, LI Jing, Li Xiangyun, Qu Yonghua, SUN Qingsong
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Biandukou foci experimental area from 11:10-13:30 on Mar. 17, 2008. Those provide reliable ground data for objects modelling and background modelling, remote sensing image simulation and scaling. Simultaneous with the satellite overpass, numerous ground data were collected, spectrum (ASD Fieldspec FRTM (Boulder, Co, USA), 350nm-2500nm, 3nm for the visible near-infrared band and 10nm for the shortwave infrared band), the surface temperature, atmospheric parameters, the soil profile gravimetric moisture (0-1cm, 1-3cm and 3-5cm), the shallow layer frost depth and the soil roughness in C1, G1, W1, W2, B1 and B2, mostly the grassland, the wheat stubble land, the deep plowed land and the rape stubble land. The quadrates of 90m×90m and 450m×450m were compartmentalized into 81 subgrids of 10m×10m and 50m×50m. Based on the resolution of 30m×30m and 150m×150m, the influence of adjacent eight pixels on the center pixel was studied. Section lines of each subgrid were adopted to acquire the pixel spectrum, which were measured more than once for the mean value. The spectrum data were archived in the ASCII format, with the first five rows as the file header and the following two columns as wavelength (nm) and reflectance (percentage) respectively. The .txt file was not reflectance but intermediate file for further calculation. Raw data were binary files direct from ASD (by ViewSpecPro). The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the cover type was also recorded. The data can be opened by Microsoft Office. Atmospheric parameters were measured by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S. Those provide reliable data for atmosphere correction of the same period in this area. The gravimetric soil moisture (samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Nine data files were included, TM data, CE318 data, B1, B2, C1, G1, W1 and W2.
CHANG Sheng, CHANG Yan, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in L2, L4 and L5 of the A'rou foci experimental area on Mar. 19, 2008. The samples were collected every 100 m along the strip from south to north. In L2, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L4, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L5, soil volumetric moisture was acquired by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Besides, GPR (Ground Penetration Radar) observations were also carried out in L6 and the handheld thermal imager observations in L4. Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
CAO Yongpan, GU Juan, HAN Xujun, LI Zhe, WANG Jianhua, Wang Weizhen, WU Yueru, ZHOU Hongmin, LI Hua, CHANG Cun, YU Meiyan, ZHAO Jin, PATRICK Klenk, SUN Jicheng, YAN Yeqing
The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained along the sample lines 1, 2, 3, 4, 5 and 6 of the Linze grassland foci experimental area on Jul. 8, 2008. 25 points at intervals of 100m were selected along each line. Simultaneous with the satellite overpass, numerous ground data were collected, soil gravimetric moisture, volumetric moisture, and soil bulk density by the cutting ring, the mean soil temperature from 0-5cm by the probe thermometer, the canopy and the land surface temperature by the hand-held infrared thermometer. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
GE Chunmei, GE Yingchun, HU Xiaoli, HUANG Chunlin, LI Hongxing, WANG Yang, WANG Xufeng, WU Lizong, WU Yueru, ZHU Shijie, YU Fan, LI Xiaoyu
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Biandukou foci experimental area on Jul. 4, 2008. Observation items included: (1) the soil temperature by the handheld infrared thermometer from L1 to L8 (1km from one another) in Biandukou and soil moisture by ML2X; nine samples were collected every 200 m along each line (1.6km). (2) 5 quadrates (50cm×50cm) investigations including GPS, the vegetation cover types and the height, the actual numbering, the valve bag numbering, wet weight+the refuse bag (g), dry weight+the envelope (g), the envelope (g) and the photo numbering. The data were archived as Excel files.
CAO Yongpan, LI Hongxing, LIU Chao, MA Mingguo, RAN Youhua, WANG Yang
The dataset of ground truth measurement synchronizing with MODIS was obtained in the Linze grassland foci experimental area on Jun. 11, 2008. Simultaneous east-west ground measurements on the canopy temperature, the half-height temperature and the surface radiative temperature were carried out by the hand-held infrared thermometer at intervals of 125m in 8 quadrates (2km×2km), No.1 quadrate (H01-H08), No.2 quadrate (H09-H16), No.3 quadrate (H17-H24), No.4 quadrate (H25-H32), No.5 quadrate (H33-H40), No.6 quadrat (H41-H48), No.7 quadrate (H49-H56) and No.8 quadrat (H57-H64). Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CHAO Zhenhua, HUANG Chunlin, MA Mingguo, Qian Jinbo, RAN Youhua, WANG Xufeng, FENG Lei, YU Fan
The dataset of ground truth measurement synchronizing with Envisat ASAR was obtained in No. 1, 2 and 3 quadrates of the A'rou foci experimental area on Jul. 5 and Jul. 6, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:14 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Observation items included: (1) the quadrate investigation in No. 2 and 3 quadrates: GPS by GARMIN GPS 76, plant species by manual cognition, the plant number by manual work, the height by the measuring tape repeated 4-5 times, phenology by manual work, the coverage by manual work (compartmentalizing 0.5m×0.5m into 100 to see the percentage the stellera takes) and the chlorophyll content by SPAD 502. (2) spectrum of stellera and pasture by ASD FieldSpec (350~2 500 nm), with 20% reference board. The preprocessed canopy spectrum was archived. (3) BRDF by ASD FieldSpec (350~2 500 nm), with 20% reference board. The processed reflectance and transmittivity were archived as .txt files. (4) photosynthesis of stellera and pasture by LI-6400. The data were archived in Excel format. (5) soil moisture by WET soil moisture tachometer. Acquisition time, soil moisture (%vol), Ecp (ms/m), Tmp Eb and Ecb (ms/m) of 25 corner points were archived. (6) the soil temperature by the handheld infrared thermometer. Acquisition time, the soil temperature measured three times and the land cover types were archived. The data included the canopy reflectance on Jul. 5 and 6, photosynthesis on Jul. 5 and 6, BRDF on Jul. 5, photos on Jul. 5, the infrared land surface temperature and soil moisture by WET on Jul. 5, biomass on Jul. 5 and the surface temperature along No. 3 flight on Jul. 6.
DING Songchuang, GE Yingchun, LI Hongyi, MA Mingguo, Qian Jinbo, WANG Yang, YU Yingjie, LIU Sihan
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) was obtained in the Biandukou foci experimental area from 11:20 to 12:30BJT on Mar. 19, 2008. Observation items included: (1) the frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office Word. (2) the surface radiative temperature by the handheld infrared thermometer and the physical temperature by the thermocouple. The data can be opened by Microsoft Office Word. (3) the soil moisture (soil samples from 0-1cm, 1-3cm and 3-5cm) by the microwave drying method. The data can be opened by Microsoft Office Word. (4) photos of each sampling point in .jpg for further reference. Six data files were included, the ground-based K-band microwave radiometer, the ground-based L-band microwave radiometer, the frost depth, soil moisture, the surface temperature and the surface conditions.
CHANG Sheng, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, CHE Tao, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dateset of the ground-based RPG-8CH-DP microwave radiometer observations was obtained in the Biandukou foci experimental area from Mar. 14 to 17, 2008. Observation items included the brightness temperature by the ground-based microwave radiometer (18.7GHz and 36.5GHz), the soil temperature by the thermal resistor, the gravimetric soil moisture by the microwave drying method, and the surface roughness by the grid board. The wheat stubble land (38°15'44.13"N, 100°55'35.34"E) was chosen for continuous observations from 11:00 to 24:00 on Mar. 14, with the incidence 20°-70° and the step length 5°. The rape stubble land (38°15'23.17"N, 100°58'37.84"E) was chosen for continuous observations from 10:00 to 21:30 on Mar. 16, with the incidence 20°-70° and the step length 5°. The deep plowed land (38°18'8.28"N, 101° 3'27.22"E) was chosen for short time observations from 17:26 to 19:20 on Mar. 17, with the azimuth angle 240°-300° and the step length 10°, the incidence 40°-70° and the step length 5°. The brightness temperature was archived as .BRT and .txt files (the ASCII format). Each row in .txt was listed by year, month, date, hour, minute, second, 6.925GHz (h), 6.925GHz (v), 10.65GHz (h), 10.65GHz (v) , 18.7GHz (h), 18.7GHz (v), 36.5GHz (h), 36.5GHz (v), the elevation angle, and the azimuth angle. Values for 6.925GHz and 10.65GHz were zero due to malfunction. The roughness data were obtained by the grid board and the camera and the RMS height (cm) and correlation length (cm) were also calculated and archived, which could be opened by Notepad or Microsoft Office Word. Those provide reliable reference for the roughness of the same land cover type. The gravimetric soil moisture (soil samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The file can be opened by Microsoft Office Word. The shallow layer soil moisture was measured by hydra prob from 12:00 to 17:00 on 14 and by the Hydra probe (straight downward for 0-5cm) and HH2 (level into the soil surface) on 16. The surface temperature was measured by the thermal resistor. The file can be opened by Microsoft Office Word. Four data files were included, the brightness temperature, the surface temperature, the soil moisture and the surface roughness.
CHANG Sheng, LIANG Xingtao, PAN Jinmei, PENG Danqing, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, YIN Xiaojun, ZHANG Zhiyu
The dataset of albedo observations was obtained by the shortwave radiometer (1#: CMP3-060580 and 2#: CMP3-060584 from Institute of Remote Sensing Applications) in the arid region hydrology experiment area from May 20 to Jul. 14, 2008. The dataset of ground truth measurement was synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner), OMIS-II, Landsat TM, ASTER, Hyperion and CHRIS. Observation items included: (1) Albedo in Yingke oasis and Huazhaizi desert steppe foci experimental area. Yingke maize field was measured on May 28 and 30, Jun. 3, 16, 20, 27 and 29, Jul. 11 and 14, 2008, Yingke wheat field on May 20 and 29, Jun. 1, 4, 6, 9, 15 and 24, Jul. 7 and 14, 2008, Huazhaizi desert No. 2 plot on Jun. 14, 22 and 30, 2008 and the flax field on Jun. 23, 2008. (2) Albedo in Linze foci experimental area. Maize was measured on May 25, 2008 and desert and alfalfa on May 24, 2008. (3) Albedo in Biandukou foci experimental area. The rape field, the grassland and the barley were measured on Jun. 24, 2008, and barley on Jul. 6, 2008. (4) Zhangye intensive experimental area. The intra-city grassland and the roof of Jingdu Hotel were measured on May 27, 2008. Besides the shortwave radiometer, the digital multimeter (UNIT) was also used for voltage measuring. Raw data were archived in paper forms and Excel after input into the computer. Besides, shorter plants were chosen for measurements as the platform was not high enough. And the distance between the probe and the plant was shorter during the later observation period.
LIU Sihan, Liu Qiang, XIN Xiaozhou, SU Gaoli, XIA Chuanfu, ZHOU Mengwei
The dataset of ground truth measurement synchronizing with MODIS was obtained in the Linze grassland foci experimental area on Jun. 10, 2008. Simultaneous east-west ground measurements on the canopy temperature, the half-height temperature and the surface radiative temperature were carried out by the hand-held infrared thermometer at intervals of 125m in 8 quadrates (2km×2km), No.1 quadrat (H01-H08), No.2 quadrat (H09-H16), No.3 quadrat (H17-H24), No.4 quadrat (H25-H32), No.5 quadrat (H33-H40), No.6 quadrat (H41-H48), No.7 quadrat (H49-H56) and No.8 quadrat (H57-H64). Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
GE Chunmei, HAO Xiaohua, HUANG Chunlin, WANG Xufeng
The dataset of ground truth measurements synchronizing with the airborne WiDAS mission was obtained in 5 quadrates (30 m×30 m) the Biandukou foci experimental area on May 31, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data were the surface radiative temperature and soil moisture. The quadrates were covered with wheat, rape and bare land. The radiative temperature of 25 corner points (located in No. 2, 3, 4 and 5 quadrates) were acquired. (1) the surface radiative temperature by the handheld infrared thermometer; the quadrate of 30 m×30 m was divided into 21 corner points and each point was measured three times; two for the bare land and one for the vegetation if the two coexist. The data included raw data, recorded data and the blackbody calibrated data. (2) soil moisture (0-5cm) by TDR; 16 center points of the subplot (7.5m×7.5m) were measured three times and the data were archived as Excel files. (3) the time-continuous surface radiative temperature by the fixed automatic thermometer (FOV: 10°; emissivity: 0.95), observing straight downwards at intervals of 1s. Raw data, blackbody calibrated data and processed data were archived as Excel files. Four data files were included, the fixed point temperature in No. 2, 3, 4 and 5 quadrates, the radiative temperature by the handheld infrared thermometer, calibration data and the time-continuous data.
CHAI Yuan, KANG Guoting, QIAN Yonggang, REN Huazhong, WANG Haoxing, LIU Xiaocheng, LIANG Wenguang, LI Xiaoyu, HUANG Bo, LUO Zhen
The dataset of ground truth measurements synchronizing with airborne WiDAS mission was obtained in the Linze grassland foci experimental area on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included the land surface temperature measured by the hand-held infrared thermometer in the reed plot A, the saline plots B and C, the alfalfa plot D and the barley plot E, the maximum of which were 120m×120m and the minimum were 30m×30m, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying measured by the cutting ring and the mean soil temperature from 0-5cm measured by the probe thermometer in plot A, B and C; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity measured by the POGO soil sensor, and the mean soil temperature from 0-5cm measured by the probe thermometer in plot D and E. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, CHAO Zhenhua, GE Chunmei, HAN Xujun, HU Xiaoli, HUANG Chunlin, LIANG Ji, WANG Shuguo, WU Yueru, FENG Lei, YU Fan, WANG Jing
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn