The Wuyu Basin is bounded by the Gangdese Mountains to the north and the Yarlung Tsangpo River to the south, and is a representative basin to study the Cenozoic tectonism of the southern Tibet. The sedimentary strata in the Wuyu Basin include the Paleocene-Eocene Linzizong Group volcanics and the Oligocene Rigongla Formation (Fm.) volcanics, the Miocene lacustrine sediments of the Mangxiang Fm. and Laiqing Fm. volcanics, the late Miocene-Pliocene Wuyu Fm., and the Pleistocene Dazi Fm. Five sandstone samples from the Mangxiang Fm., Wuyu Fm. and Dazi Fm. and one modern Wuyu reiver sand sample were collected for detrital zircon U-Pb dating using the LA-ICP-MS method. Detrital zircon U-Pb ages in the Mangxiang Fm. show a large cluster at 45-80 Ma; those in the Wuyu Fm. show a large cluster at 8-15 Ma and a subsidiary cluster at 45-70 Ma; those in the Dazi Fm. show three large clusters at 45-65 Ma, 105-150 Ma and 167-238 Ma; and those in modern Wuyu river show a large cluster at 8-15 Ma and a subsidiary cluster at 45-65 Ma (Figure 1). Late Cretaceous-early Eocene zircons in all samples are consistent with the most prominent stage of magmatism of the Gangdese Mountains; the 8-15 Ma zircons in the Wuyu Fm. and modern Wuyu river are consistent with the magmatism of the Laiqing Fm.; and the Triassic-Jurassic zircons in the Dazi Fm. are consistent with the magmatism of the central Lhasa terrane. The results of detrital zircon U-Pb ages and sedimentary facies analyses in the Wuyu Basin indicate that the southern Tibetan Plateau suffered multi-stage tectonism-magmatism since the India-Asia collision: (1) Paleogene Linzizong Group-Rigongla Fm. volcanics; (2) tectonism-magmatism at ~15 Ma ended the lacustrine sediments of the Mangxiang Fm. and resulted in volcanism of the Laiqing Fm.; (3) tectonism at ~8 Ma resulted in the volcanic rocks of the Laiqing Fm. becoming one of the main provenances for the overlying Wuyu Fm.; (4) the Wuyu Basin formed braided river and received sediments from the central Lhasa terrane to its north at ~2.5 Ma. The geomorphic pattern of the southern Tibet has gradually formed since the Quaternary.
MENG Qingquan MENG Qingquan
Guided by the theories of plate tectonics, paleogeography, petroliferous basin analysis and sedimentary basin dynamics, a large number of data and achievements of geological research and oil and gas geological research in the pan third pole in recent years are collected, including basic materials such as strata, sedimentation, paleontology, paleogeography, paleoenvironment, paleoclimate, structure, oil and gas (potassium salt) geology, especially paleomagnetism Based on the data of paleontology, detrital zircon and geochemistry, combined with the results of typical measured stratigraphic sections, the Cenozoic lithofacies and climate paleogeographic pattern are restored and reconstructed, and the pan tertiary Cenozoic lithofacies paleogeographic map (1) and pan tertiary Cenozoic climate paleogeographic map (3) are obtained, in order to explore the impact of paleogeography, paleostructure and paleoclimate on oil and gas Control and influence of (including potassium salt) resources, so as to reveal the geological conditions of oil and gas formation and the law of resource distribution, and provide scientific basis and technical support for China's overseas and domestic oil and gas exploration deployment.
LI Yalin
The Himalayas is the most majestic, tall and young folded mountain system on earth. Before Eocene, the Himalayas were in a long-term sinking shallow sea environment. Under the action of extremely strong Himalayan movement, the Himalayas rose from the sea. By the end of tertiary, it had risen to a high mountain with an average height of more than 3000 meters. Therefore, under the influence of global climate change, Mount Everest has experienced several major Pleistocene glaciations, leaving behind various glacial related sediments and interglacial deposits. In 1960, the scientific investigation team of the Chinese Everest mountaineering team and the scientific investigation team of the Chinese xishabangma mountaineering team in 1964 conducted a more detailed investigation on the glaciers and other Quaternary sediments in the two peaks and their adjacent areas. During the scientific investigation of Mount Qomolangma from 1966 to 1968, on the basis of previous work, the Quaternary glacial deposits characteristic of this area were further investigated, and the research on various deposits in interglacial period and post glacial period was strengthened, so as to find some complete and typical quaternary stratigraphic profiles. This data set comes from the field investigation of the scientific research team in this book. Outline This paper introduces the spatial distribution characteristics of Quaternary sediments, focuses on several main quaternary stratigraphic profiles, preliminarily establishes the sequence of Quaternary strata in this area and discusses the age of strata. It lays a foundation for in-depth discussion of Quaternary glaciation, paleoclimate and the rise of Himalayas in this area.
Tibetan Scientific Expedition of the Chinese Academy of Sciences
Guided by the theory of plate tectonics, paleogeography, petroliferous basin analysis and sedimentary basin dynamics, we have collected a large number of data and achievements of geological research and petroleum geology in recent years, including strata, sedimentation, paleontology, paleogeography, paleoenvironment, paleoclimate, structure, oil and gas (potash) geology and other basic materials, especially paleomagnetism, Paleogene Based on the data of detrital zircon and geochemistry, combined with the results of typical measured stratigraphic sections, the lithofacies and climate paleogeographic pattern of Cretaceous were restored and reconstructed, and two lithofacies paleogeographic maps of early and late Cretaceous of Pan tertiary and two climate paleogeographic maps of early and late Cretaceous of Pan tertiary were obtained, aiming at discussing the influence of paleogeography, paleostructure and paleoclimate In order to reveal the geological conditions and resource distribution of oil and gas formation, and provide scientific basis and technical support for China's overseas and domestic oil and gas exploration deployment.
LI Yalin
Guided by the theories of plate tectonics, paleogeography, petroliferous basin analysis and sedimentary basin dynamics, we have collected a large number of data and achievements of geological research and oil-gas geological research in Pan third pole in recent years, including basic materials such as stratum, sedimentation, paleontology, paleogeography, paleoenvironment, paleoclimate, structure, oil-gas (potash) geology, especially paleomagnetism and paleogenesis On the basis of zircon and geochemical data, combined with the results of typical measured stratigraphic sections, the lithofacies and climate palaeogeographic pattern of Jurassic period are restored and reconstructed, and the paleogeographic map of lithofacies and climate of Pan third extremely early, middle and late Jurassic (3 sheets) and pan third extremely early, middle and late Jurassic (3 sheets) are obtained, aiming to discuss paleogeography and paleostructure The control and influence of paleoclimate on oil and gas (including potash) resources, in order to reveal the geological conditions and resource distribution rules of oil and gas formation, and provide scientific basis and technical support for overseas and domestic oil and gas exploration and deployment in China.
LI Yalin
The Southern Tibet Rift System (STRS) is one of the most prominent tectonic and geomorphological features in the southern Tibetan Plateau. The Jilong-Oma and Dati basins are located in the northern Himalaya Mountains. The late Cenozoic sedimentary sequences deposited in these two rift basins have archived abundant information about formation and evolution of the STRS and the uplift process of the Tibetan Plateau. The detailed stratigraphic and sedimentologic investigations were conducted on the late Cenozoic sediments in the Jilong-Oma basins. The late Cenozoic sediments in the Jilong-Oma Basin is over 610 m in thickness, including the lower conglomerate member of the fan delta facies (Danzengzhukang Fm., 400-600 m), the middle mudstone interbedded with sandstone member of fluvio-lacustrine facies (Oma Fm., 200-400 m) and the upper conglomerate intercalated with mudstone member of alluvial fan facies (Gongba Fm., 200-0 m). The Hipparion fossils were previously found at the bottom of the Oma Fm. The late Cenozoic sediments in the Dati Basin have a thickness of ~300 m, iucluding the lower mudstone, sandstone and sandy conglomerate member of fluvio-lacustrine faceis (Dati Fm., 80-305 m), and the upper conglomerate member of alluvial fan facies (Gongba Fm., 80-0 m). The Hipparion fossils were previously found at the upper part of the Dati Fm. By comparing with the Zhada Basin in the west part of the Himalaya orogen, it shows that these rift basins experienced the similar sedimentary evolution history and have the comparable Hipparion fossils. Establishing the precise chronology of these sediments and carrying out comprehensive comparison analyses between the rift basins play important roles in understanding the formation and evolution of the STRS, the uplift and deformation processes of the southern Tibetan Plateau and the climate change in the surrounding areas.
ZHANG Weilin
Since the formation of Heihe River, sporopollen data samples have been collected from the drilling strata of Da'ao well in the middle reaches of Heihe River. Drilling location: 39.491 n, 99.605 E. The drilling depth is 140 meters. 128 samples of sporopollen are collected from top to bottom. At present, there are 19 data of sporopollen results, which are distributed in each sedimentary facies from top to bottom. The sporopollen samples were removed from carbonate, organic matter, silicate and other impurities in the laboratory, and the species and data of sporopollen were identified under the microscope. Sporopollen results mainly include the percentage content and number of trees, shrubs, herbs, aquatic, ferns and other families and genera.
HU Xiaofei, PAN Baotian
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn