1) Data content: CT scan dataset of vegetation-soil-rock three-dimensional spatial structure of typical watersheds in Qilian Mountains, the data includes the volume density of moss layers at different depths, soil macroporosity and soil gravel volume density data in typical watersheds of Qilian Mountains; 2) Data Source and processing method: The moss layer and the undisturbed soil column with a depth of 30 cm under the moss cover were collected in a typical small watershed of the Qilian Mountains, and the moss layer and the undisturbed soil column were scanned with an industrial X-ray three-dimensional microscope; 3) Data quality description: The resolution of moss layer is 40 μm, and the resolution of undisturbed soil column is 68 μm; 4) Data application results and prospects: CT scan data set of vegetation-soil-rock three-dimensional spatial structure of typical small watersheds in Qilian Mountains is suitable for ecological restoration, water resources management and utilization in Qilian Mountains. It is of great significance and can provide basic data and theoretical support for elaborating the water conservation function and mechanism of the Qilian Mountains.
HU Xia
The normalized difference vegetation index (NDVI) can accurately reflect the surface vegetation coverage. At present, NDVI time series data based on spot / vegetation and MODIS satellite remote sensing images have been widely used in the research of vegetation dynamic change monitoring, land use / cover change detection, macro vegetation cover classification and net primary productivity estimation in various scale regions. The spatial distribution data set of 1km vegetation index (NDVI) in Southeast Tibet is in MODIS( https://ladsweb.modaps.eosdis.nasa.gov/ )Based on the 16 day 1km surface reflectance data (mod13), the monthly vegetation index data set since 2000 is generated by the maximum synthesis method. The data set effectively reflects the distribution and change of vegetation cover in Southeast Tibet on spatial and temporal scales. It has very important reference significance for the monitoring of vegetation change, the rational utilization of vegetation resources and other fields related to ecological environment. Monthly NDVI data is the maximum value of monthly NDVI data, and the data acquisition time is from February 2000 to December 2018. The downloaded data is in grid format with a spatial resolution of 1km.
WANG Hao
1) Data content: the data are the ancient DNA data generated by studying the cultural layer of Klu lding site in Nyingchi region, Tibetan Plateau, including the hiseqx metagenomics data of 10 ancient DNA samples from 4 layers. It can be used to preliminarily analyze the changes of species composition recorded by ancient DNA in the sediments, and reveal the process of local agricultural development. 2) Data source and processing method: the research group has its ownership. the data were obtained by using pair-end library building and Illumina hiseqx sequencing platform. 3) Data quality: 20.3 MB, Q30 > 85%. 4) Application: The data will be used to explore the potential of the ancient DNA from archaeological sediments in revealing the development of ancient agriculture on the Tibetan Plateau.
YANG Xiaoyan
The data set includes the start time (year, month), location (longitude and latitude), duration (month), drought intensity and vulnerability data of vegetation response to drought in Central Asia from 1982 to 2015, with a spatial resolution of 1 / 12 °. The drought events were identified by the standardized precipitation evapotranspiration index at the time scale of 12 months (spei12) < - 1.0. The specific algorithm of drought characteristics and vegetation vulnerability is detailed in the citation. The dataset has been applied in the study of vegetation vulnerability to drought in Central Asia, and has application prospects in the research fields of spatial-temporal characteristics of drought events, drought-vegetation interaction mechanism, drought risk assessment and so on.
DENG Haoyu
The dataset contains the phenological camera observation data of the Xiyinghe station in the midstream of Shiyanghe integrated observatory network from January 1 to December 31, 2019. The instrument was developed and data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures data by look-downward with a resolution of 1280×720. For the calculation of the greenness index and phenology, the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) needs to be calculated according to the region of interest, then the invalid value filling and filtering smoothing are performed, and finally the key phenological parameters are determined according to the growth curve fitting, such as the growth season start date, Peak, growth season end, etc. For coverage, first, select images with less intense illumination, then divide the image into vegetation and soil, calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc), phenological period and coverage (Fc).
ZHAO Changming, ZHANG Renyi
The experimental project of vegetation degradation mechanism and reconstruction in Yuanjiang dry-hot valley in Yunnan belongs to the major research program of "Environmental and Ecological Science in Western China" of the National Natural Science Foundation. The principal is researcher Cao Kunfang of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. The project runs from January 2004 to December 2007. Data collected for this project include: 1. Excel table of multi-year average temperature and rainfall in Yuanjiang dry-hot valley (1961-2004), with attribute fields including monthly average temperature and monthly average rainfall. 2. excel table of annual average temperature (1750-2006) in the middle of Hengduan Mountain in China based on tree ring, with attribute fields including year and reconstructed average temperature. 3. excel table of summer temperatures (1750-2006) in the central Hengduan Mountains in southern China based on tree rings. The attribute fields include the year and the reconstructed average temperature in summer (April-September). 4. excel table of drought index (1655-2005) in central Hengduan Mountains of China based on tree rotation, with attribute fields including year and reconstruction of drought index in spring (March-May). 5. pdf file of growth dynamic graph of leaves and branches. it records the growth dynamic trend line and leaf dynamic trend graph of plants with s-type, f-type, intermediate-type and S+SD-type branches from March 22, 2004 to April 8, 2005. 6.32 Phenological Summary Tables of Woody Plants (word Document: Specific Name, Number of Observed Plants/Branches, Type of Branch Extension, Leaf Phenology, Length of Current Year Branches (cm), Total Leaves on Branches, Leaf Area (cm2), Non-leaf Period (Months), Flowering Period, Fruit Ripening Period and Fruit Type) 7. Seasonal Changes of Relative Water Content of Plant Leaves in Yuanjiang Dry-hot Valley (March 2003-February 2004) Excel Table 8. Seasonal Changes of Photosynthesis of 6 Representative Plants in Yuanjiang Dry-hot Valley (Maximum Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency, Maximum Subefficiency of photosystem II) excle Table (2003-2005) 9. excle Table of Long-term Water Use Efficiency (Isotope) Data of Representative Plants in Yuanjiang Dry-hot Valley (Water Use Efficiency in Dry and Wet Seasons of Shrimp Flower, Red-skin Water Brocade Tree, Three-leaf Lacquer, Phyllanthus emblica, Pearl Tree, Dried Sky Fruit, Cyclobalanopsis glauca, West China Small Stone Accumulation, Geranium, Tiger thorn, Willow and Pigexcrement Bean) 10. word Document of List of Plants in Mandan Qianshan, Yuanjiang
CAO Kunfang
I. Overview The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. Ⅱ. Data processing description The VEGETATION sensor was launched by SPOT-4 in March 1998, and has received SP0T VGT data for global vegetation coverage observation since April 1998. It has a very complete and efficient image ground processing mechanism system. The VEGETATION data is mainly received by the Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides related parameters (such as calibration coefficients). Finally, the image processing and archiving center of VITO Institute in Belgium Global VEGETATION data archiving and user orders. Among them, VGT-P (prototype) data products mainly provide scientific researchers with high-quality physical quantity prototype data in order to facilitate their research and development of algorithms and application models. The data undergoes strict systematic error correction and resampling into a longitude and latitude network projection, the pixel resolution is lkm, and the pixel brightness value is the reflectivity of the ground features on the top layer of the atmosphere. In addition to providing four bands of raw data, relevant auxiliary parameters such as atmospheric conditions, system information (solar zenith angle, azimuth, field of view, and reception time) and terrain data are also provided according to user needs. VGT-S (synthesis) products provide atmospheric-corrected surface reflectance data, and use multi-band synthesis techniques to obtain a normalized vegetation index (w) data set with lkm resolution. VGI-S products include the spectral reflectance and NDVI data set (s1) of four bands synthesized daily, the spectral reflectance of four bands synthesized every 10 days, and the maximum NDVI data set (S10) every 10 days to reduce cloud and The impact of BRDF, while S10 was also resampled into 4km resolution (S10.4) and 8km resolution (S10.8) datasets. VGT-S products are widely used for their high time resolution. This data set contains the spectral reflectance of four bands synthesized every 10 days and the 10-day maximized NDVI data set (S10). The pre-processing of SPOT source data includes atmospheric correction, radiation correction, and geometric correction. NDVI data with a maximum of 10 days of synthesis is generated, and the values of -1 to -0.1 are set to -0.1, and then formula YDN = (JNDVI +0.1) /0.004 Convert to a YDN value from 0 to 250. Ⅲ. Data content description The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. The SPOT-VEGETATION-NDVI data set contains .zip compressed files with time resolution from April 1, 1998 to December 31, 2011. After decompression, it is an ESRI-GRID file with a scene every 10 days. The SPO-VEGETATION-NDVI data set naming rules are: v-yymmdd, where v is the abbreviation of vegetation, yymmdd represents the date of the file, and is the main identifier that distinguishes other files. Ⅳ. Data usage description An important feature of the Vegetation Index product is that it can be converted into leaf crown biophysical parameters. Vegetation index (VI) also plays an "intermediate variable" in the acquisition of vegetation biophysical parameters (such as foliar index LAI, green shade, fAPAR, etc.). The relationship between vegetation indices and vegetation biophysical parameters is currently being studied using globally representative ground, aircraft and satellite observation datasets. These data can be used to evaluate the performance of the VI algorithm before satellite launch, and also provide the conversion coefficient between the vegetation index product and the biophysical characteristics of the leaf crown. The use of biophysical data is part of the Vegetation Index Verification Program. Vegetation index products will play a major role in several Earth Observation System (EOS) studies and are also part of global and regional biosphere model products in recent years.
XUE Xian, DU Heqiang
This dataset: Editor-in-Chief: Hou Xueyu Drawing: Hou Xueyu, Sun Shizhou, Zhang Jingwei, He Miaoguang. Wang Yifeng, Kong Dezhen, Wang Shaoqing Publishing: Map Press Issue: Xinhua Bookstore Year: 1979 Scale: 1: 4,000,000 It took five years to complete from May 1972 to July 1976. In the process of drawing legends and mapping, referring to the vast majority of vegetation survey data (including maps and texts) after 1949 in China, we held more than a dozen mapping seminars involving researchers from inside and outside the institute. During the layout after the mapping work was completed, many new survey data were added, especially vegetation data in western Tibet. The nature of this map basically belongs to the current vegetation map, including two parts of natural vegetation and agricultural vegetation. The legend of natural vegetation is arranged according to the seven vegetation groups. They are mainly divided according to the appearance of plant communities and certain ecological characteristics. The concept of agricultural vegetation community, like the natural vegetation community, also has a certain life form (appearance, structure, layer), species composition and a certain ecological location. In 1990, the State Key Laboratory of Resources and Environmental Information Systems of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences completed the digitization of this map, and wrote relevant data description documents. The digitized data also adopt equal product cone projection and can be converted into other projections by GIS software. This data includes a vector file in e00 format, a Chinese vegetation coding design description, a dataset description, a vegetation data layer attribute data table, and a scanned "People's Republic of China Vegetation Map-Brief Description" and other files. Data projection: Projection: Albers false_easting: 0.000000 false_northing: 0.000000 central_meridian: 110.000000 standard_parallel_1: 25.000000 standard_parallel_2: 47.000000 latitude_of_origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Unknown Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Unknown Spheroid: Clarke_1866 Semimajor Axis: 6378206.400000000400000000 Semiminor Axis: 6356583.799999999800000000 Inverse Flattening: 294.978698213901000000
HOU Xueyu, SUN Shizhou, ZHANG Jingwei, HE Miaoguang, WANG Yifeng, KONG Dezhen, WANG Shaoqing
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn