Based on the data of GF-1 and GF-2 in China, the freeze-thaw disaster distribution data of Qinghai Tibet project corridor is produced by using the deep learning classification method and manual visual interpretation and correction. The geographical range of the data is 40km along the Xidatan Anduo section of Qinghai Tibet highway. The data include the distribution data of thermokast lakes and the distribution data of thermal melting landslides. The dataset can provide data basis for the research of freeze-thaw disaster and engineering disaster prevention and reduction in Qinghai Tibet engineering corridor. The spatial distribution of freezing and thawing disasters within 40km along the Xidatan-Anduo section of Qinghai Tibet highway is self-made based on the domestic GF-2 image data. Firstly, the deep learning method is used to extract the mud flow terrace block from GF-2 data; Then, ArcGIS is used for manual editing.
NIU Fujun, LUO Jing LUO Jing
Based on the Sentinel-2 and Landsat 5/7/8 multispectral instrument imageries combined with in-situ measured hydrological data, bankfull river geometry of six major exorheic river basins of the Qinghai-Tibet Plateau (the upper Yellow River, upper Jinsha River, Yalong River, Lantsang River, Nu River and Yalung Zangbo River) are presented. River surface of six mainstreams and major tributaries are included. For each river basin, two types of rivers are included: connected and disconnected rivers. Format of the dataset is .shp exported from the ArcGIS 10.5. Three products are included in the dataset: one original product (bankfull river surface dataset) and two derived products (bankfull river width dataset and bankfull river surface area dataset with a 1 km river length interval). These three products are in three folders. The first folder, “1-Bankfull River Surface”, contains river surface vectors for six river basins in the .shp file. The second folder, “2-Bankfull River Width”, contains bankfull river widths and corresponding coordinates with a 1 km-step river length for six mainstreams and some connected tributaries in .xlsx format. The river width vectors in the .shp files are also provided in the second folder. The third folder, “3-Bankfull River Surface Area”, contains bankfull river surface areas and corresponding coordinates with a 1 km-step river length for six mainstreams and some connected tributaries in .xlsx format. Three Supplementary Files are included: Supplementary File 1, tables and figures related to the dataset; Supplementary File 2, used for river surface extraction based on GEE platform; Supplementary File 3, used for river width extraction based on Matlab. The provided planform river hydromorphology data can supplement global hydrography datasets and effectively represent the combined fluvial geomorphology and geological background in the study area.
LI Dan , XUE Yuan , QIN Chao , WU Baosheng , CHEN Bowei , WANG Ge
Fractional Vegetation Cover (FVC) refers to the percentage of the vertical projected area of vegetation to the total area of the study area. It is an important indicator to measure the effectiveness of ecological protection and ecological restoration. It is widely used in the fields of climate, ecology, soil erosion and so on. FVC is not only an ideal parameter to reflect the productivity of vegetation, but also can play a good role in evaluating topographic differences, climate change and regional ecological environment quality. This research work is mainly to post process two sets of glass FVC data, and give a more reliable vegetation coverage of the circumpolar Arctic Circle (north of 66 ° n) and the Qinghai Tibet Plateau (north of 26 ° n to 39.85 °, east longitude 73.45 ° to 104.65 °) in 2013 and 2018 through data fusion, elimination of outliers and clipping.
YE Aizhong
NDVI reflects the background effects of plant canopy, such as soil, wet ground, snow, dead leaves, roughness, etc., and is related to vegetation cover. It is one of the important parameters to reflect the crop growth and nutrient information. According to this parameter, the N demand of crops in different seasons can be known, which is an important guide to the reasonable application of N fertilizer. Correct NDVI (C-NDVI) is the value of NDVI after excluding the influence of climate elements (temperature, precipitation, etc.) on NDVI. Taking precipitation as an example, studies on the lag effect of precipitation on vegetation growth show that the lag time of precipitation effects varies in different regions due to differences in vegetation composition and soil types. In this study, we post-processed the MODIS NDVI data and firstly correlated the NDVI value of the current month with the precipitation of the current month, the average value of the precipitation of the current month with that of the previous month, and the average value of the precipitation of the current month with that of the previous two months to determine the optimal lag time. The NDVI was regressed on precipitation and air temperature to obtain the correlation coefficients, and then the corrected NDVI values were calculated by the difference between the MODIS NDVI and the NDVI regressed on climate factors. We corrected NDVI using climate data to give reliable vegetation correction indices for the circum-Arctic Circle (range north of 66°N) and the Tibetan Plateau (range 26°N to 39.85°N and 73.45°E to 104.65°E) for 2013 and 2018. The spatial resolution of the data is 0.5 degrees and the temporal resolution is monthly values.
YE Aizhong
Photosynthetically active radiation (PAR) is fundamental physiological variable driving the process of material and energy exchange, and is indispensable for researches in ecological and agricultural fields. In this study, we produced a 35-year (1984-2018) high-resolution (3 h, 10 km) global grided PAR dataset with an effective physical-based PAR model. The main inputs were cloud optical depth from the latest International Satellite Cloud Climatology Project (ISCCP) H-series cloud products, the routine variables (water vapor, surface pressure and ozone) from the ERA5 reanalysis data, aerosol from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) products and albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) product after 2000 and CLARRA-2 product before 2000. The grided PAR products were evaluated against surface observations measured at seven experimental stations of the SURFace RADiation budget network (SURFRAD), 42 experimental stations of the National Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese Ecosystem Research Network (CERN). The instantaneous PAR was validated at the SURFRAD and NEON, and the mean bias errors (MBEs) and root mean square errors (RMSEs) are 5.6 W m-2 and 44.3 W m-2, and 5.9 W m-2 and 45.5 W m-2, respectively, and correlation coefficients (R) are both 0.94 at 10 km scale. When averaged to 30 km, the errors were obviously reduced with RMSEs decreasing to 36.3 W m-2 and 36.3 W m-2 and R both increasing to 0.96. The daily PAR was validated at the SURFRAD, NEON and CERN, and the RMSEs were 13.2 W m-2, 13.1 W m-2 and 19.6 W m-2, respectively at 10 km scale. The RMSEs were slightly reduced to 11.2 W m-2, 11.6 W m-2, and 18.6 W m-2 when upscaled to 30 km. Comparison with the other well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES) reveals that our PAR product was a more accurate dataset with higher resolution than the CRERS. Our grided PAR dataset would contribute to the ecological simulation and food yield assessment in the future.
TANG Wenjun
This data set is based on the remote sensing monitoring data set of landuse status in China, Chinese Academy of Sciences, and the data of land use types of Qilian Mountain National Park in 1985 through cutting, splicing and other operations. Data production is the vector data generated by manual visual interpretation using Landsat TM / ETM Remote sensing images as the main data source. Landuse types include cropland, forest, shrub, grassland, wetland, water, tundra, impervious surface, bareland, glacier and permanent snow. We can analyze the historical landuse types in Qilian mountain area, and analyze the changes of land use types in Qilian mountain area combined with the current landuse type data.
NIAN Yanyun
Land surface temperature (LST) is a key parameter in the study of surface energy balance. It is widely used in the fields of meteorology, climate, hydrology, agriculture and ecology. As an important means to obtain global and regional scale LST information, satellite (thermal infrared) remote sensing is vulnerable to the influence of cloud cover and other atmospheric conditions, resulting in temporal and spatial discontinuity of LST remote sensing products, which greatly limits the application of LST remote sensing products in related research fields. The preparation of this data set is based on the empirical orthogonal function interpolation method, using Terra / Aqua MODIS surface temperature products to reconstruct the lst under ideal clear sky conditions, and then using the cumulative distribution function matching method to fuse era5 land reanalysis data to obtain the lst under all-weather conditions. This method makes full use of the spatio-temporal information of the original MODIS remote sensing products and the cloud impact information in the reanalysis data, alleviates the impact of cloud cover on LST estimation, and finally reconstructs the high-quality global 0.05 ° spatio-temporal continuous ideal clear sky and all-weather LST data set. This data set not only realizes the seamless coverage of space-time, but also has good verification accuracy. The reconstructed ideal clear sky LST data in the experimental areas of 17 land cover types in the world, the average correlation coefficient (R) is 0.971, the bias (bias) is -0.001 K to 0.049 K, and the root mean square error (RMSE) is 1.436 K to 2.688 K. The verification results of the reconstructed all-weather LST data and the measured data of ground stations: the average R is 0.895, the bias is 0.025 K to 2.599 K, and the RMSE is 4.503 K to 7.299 K. The time resolution of this data set is 4 times a day, the spatial resolution is 0.05 °, the time span is 2002-2020, and the spatial range covers the world.
ZHAO Tianjie, YU Pei
1) Significance: construction land is one of the highest performance of human activities. The consumption of natural resources and the change of ecological environment can be closely linked with the development of construction land. This data reflects the evolution of high-precision construction land with 30 m spatial resolution from 1990 to 2019 in 7 provinces/municipalities directly under the central government of China, which are also important areas for rapid urbanization. 2) Data sources: Landsat series satellite data; China regional surface meteorological element driven data set (1979-2018) 3) Processing method: supervised classification method is adopted, random forest algorithm and Fourier transform are used to process characteristic bands, and control points are classified based on visual interpretation. 3-1) Obtaining spectral features: First, screen out Landsat images with transport volume <20%, and superimpose these images in units of 3 years, and then take the median of each superimposed pixel as the target pixel for pixel stitching. Obtain cloud-free images of the entire study area. This method can also better remove the banding influence of Landsat7 data. 3-2) Acquisition of time features: each pixel that has been superimposed for 3 years is screened for cloud cover, and discrete Fourier transform is performed following the minimum mean square error fitting principle to obtain the time latitude of each pixel. "Crest", "Trough" and "Phase". This method can better eliminate the influence of “bare land” on the extraction of construction land, because bare land may be covered by vegetation in spring and summer, and its time characteristics are quite different from construction land. 3-3) Extraction of meteorological and terrain features: The meteorological features are calculated from the China Regional Ground Meteorological Elements Driven Data Set (1979-2018): the data set is superimposed at the same time interval as Landsat, and each image is obtained The average value of yuan is used as the meteorological feature (due to the lack of meteorological data for 2019, the meteorological feature of the last period only calculates the average value of 2017 and 2018). Topographic features (elevation, slope) use SRTM-30m data. The detailed method and code can be seen as follows: https://github.com/wangjinzhulala/North_ China_ Plain_ GEE_ Organized 4) Data quality: the overall accuracy of all years is better than 94%. 5) Application prospects: Simulation of regional urban expansion; estimation of environmental impact of urbanization; quantification of food security and sustainable development.
WANG Jinzhu
Based on the medium resolution long time series remote sensing image Landsat, the data set obtained six periods of ecosystem type distribution maps of the Qinghai Tibet Plateau in 1990 / 1995 / 2002 / 2005 / 2010 / 2015 through image fusion, remote sensing interpretation and data inversion, and made the original ecological base map of the Qinghai Tibet Plateau in 25 years (1990-2015). According to the area statistics of various ecosystems in the Qinghai Tibet Plateau, the area of woodland and grassland decreased slightly, the area of urban land, rural residential areas and other construction land increased, the area of rivers, lakes and other water bodies increased, and the area of permanent glacier snow decreased from 1990 to 2015. The atlas can be used for the planning, design and management of ecological projects in the Qinghai Tibet Plateau, and can be used as a benchmark for the current situation of the ecosystem, to clarify the temporal and spatial pattern of major ecological projects in the Qinghai Tibet Plateau, and to reveal the change rules and regional differences of the pattern and function of the ecosystem in the Qinghai Tibet Plateau.
ZHAO Hui, WANG Xiaodan
The remote sensing image interpretation mark is also called the interpretation factor, which can directly reflect the image features of the ground object information. The interpreter uses these marks to identify the nature, type or condition of the feature or phenomenon on the image, so it is for the remote sensing image data. Human-computer interactive interpretation is of great significance. The image used in the data to establish the interpretation mark avoids the summer with high vegetation coverage, and avoids the data with more snow cover, cloud cover or smog influence.According to the basic geographic information data extraction requirements, the combination of the remote sensing image band combination order and the full color band are selected.Avoid data loss when enhancing data. The requirement for selecting a typical marker-building area on an image is that the range is moderate to reflect the typical features of the type of landform, including as many basic geographic information elements as possible in the type of landform and the image quality is good. After the selection of the marking area is completed, look for all the basic geographic information element categories contained in the marking area, and then select various typical maps as the collection marks, then go to the field for field verification,including 3429 sampling reference points and 1,870 photos, and the translation of the library was established, and the unreasonable parts were modified until they were consistent with the field. At the same time, the ground photo of the map is taken to make the image and the actual ground elements relate to each other, expressing the authenticity and intuitiveness of the remote sensing image interpretation mark, and to deepen the user's understanding of the interpretation mark.
LIU Tie
Land use data of almaty, with a resolution of 30 meters, was in the form of TIF and the time was 1990.05.03 and 2018.04.14, respectively. Data source GLC, the raw data of its global land cover data comes from Envisat satellite and is captured by MERIS (Medium Resolution Imaging Spectrometer) sensor.There are currently two issues, GlobCover (Global Land Cover Map) and GlobCover (Global Land Cover Product).
HUANG Jinchuan, MA Haitao
This dataset is TM remote sensing data covers western China, around the 1980s. Data attributes: Pixel Size: 30-meter reflective: Bands 1-5 and 7 60-meter thermal: Band 6 Output Format: GeoTIFF Resampling method: cubic convolution (CC) Map Projection: UTM – WGS 84 Polar Stereographic for the continent of Antarctica. Image Orientation: Map (North Up) The data was partially downloaded from the USGS http://eros.usgs.gov/ website, and partly collected from various projects. The data folder is named the row and column number where the image is located. The folder contains TM 7 bands images (* .tif), header files (* .met, * .hdr) and thumbnails (jpg). The naming format of image files is row and column number _TM image mark (5t), and image acquisition time _ band number.
EROS DATA CENTER
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn