Based on the monthly precipitation data of 262 rain gauges, WRF and ERA5 precipitation data in the Yarlung Zangbo River basin, the daily precipitation data with a resolution of 10km from 1951 to 2020 in the Yarlung Zangbo River basin and seven sub basins are reconstructed using random forest learning algorithm. This data has been verified by the single point of the station and performs well in terms of annual and seasonal changes. And the data has been reverse evaluated by the hydrological model, which is used to drive the VIC hydrological model to simulate the runoff change of Yajiang River basin and each sub basin, and verified by the measured runoff, MODIS and glacier cataloging data. On the basis of the original first edition, this data has considered the spatial distribution characteristics of precipitation, which can better describe the precipitation characteristics in alpine regions.
SUN He
CMIP6 is the sixth climate model comparison plan organized by the World Climate Research Program (WCRP). Original data from https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 This dataset contains four SSP scenarios of Scenario MIP in CMIP6. (1) SSP126: Upgrade of RCP2.6 scenario based on SSP1 (low forcing scenario) (radiation forcing will reach 2.6W/m2 in 2100). (2) SSP245: Upgrade of RCP4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 W/m2 in 2100). (3) SSP370: New RCP7.0 emission path based on SSP3 (medium forcing scenario) (radiation forcing will reach 7.0 W/m2 in 2100). (4) SSP585: Upgrade the RCP8.5 scenario based on SSP5 (high forcing scenario) (SSP585 is the only SSP scenario that can make the radiation forcing reach 8.5 W/m2 in 2100). Using GRU data to correct the post-processing deviation of the original CMIP data, the post-processing data set of monthly precipitation (pr) and temperature (tas) estimates from 2046-2065 was obtained, with a reference period of 1985-2014.
YE Aizhong
Precipitation over the Tibetan Plateau (TP) known as Asia's water tower plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP that features complex terrain and the harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) data set was generated at a daily timescale and a spatial resolution of 0.1° across the TP for the 1998‒2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root mean squared error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow rivers in the TP. The MSP achieved the best Nash-Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004‒2014. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high quality precipitation data for hydrological research. The latitude and longitude of the left bottom corner across the TP, the number of rows and columns, and grid cells information are all included in each ASCII file.
HONG Zhongkun , LONG Di
The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.
XU Wenqiang
The data set includes the start time (year, month), location (longitude and latitude), duration (month), drought intensity and vulnerability data of vegetation response to drought in Central Asia from 1982 to 2015, with a spatial resolution of 1 / 12 °. The drought events were identified by the standardized precipitation evapotranspiration index at the time scale of 12 months (spei12) < - 1.0. The specific algorithm of drought characteristics and vegetation vulnerability is detailed in the citation. The dataset has been applied in the study of vegetation vulnerability to drought in Central Asia, and has application prospects in the research fields of spatial-temporal characteristics of drought events, drought-vegetation interaction mechanism, drought risk assessment and so on.
DENG Haoyu
The research project on land surface data assimilation system in western China belongs to the major research plan of "environment and ecological science in western China" of the national natural science foundation. the person in charge is Li Xin, researcher of the institute of environment and engineering in cold and arid regions of the Chinese academy of sciences. the project runs from January 2003 to December 2005. One of the data collected in this project is the reanalysis data of surface climate factors in western China in 2002. This data set is generated based on the daily 1 × 1 provided by the National Environmental Prediction Center (NCEP). However, the re-analysis of the data has the following problems: (1) the temporal and spatial resolution is not high enough (the horizontal resolution is 1 degree and the time is 6 hours); (2) The low-level errors in plateau areas are large; (3) The data are standard isosurface data and need interpolation. The 2002 reanalysis data set of surface climate elements in western China was generated by combining NCEP reanalysis data and MM5 model by Dr. Longxiao and Professor Qiu Chongjian of Lanzhou University using Newton relaxation data assimilation method (Nudging), including 10m horizontal and vertical wind speed (m/s), 2m air temperature (k), 2m mixing ratio, surface pressure (Pa), upstream and downstream short wave and long wave radiation (w/m2), convective precipitation and large scale precipitation (mm/s) at 0.25 degree per hour throughout 2002. I. preparation background The quality of the driving data seriously affects the ability of the land surface model to simulate the land surface state, so a very important component of the land surface modeling research is the driving data used to drive the land surface model. No matter how realistic these models are in describing the surface process, no matter how accurate the boundary and initial conditions they input, if the driving data are not accurate, they cannot get the results close to reality. Land surface models are so dependent on the quality of externally provided data that any error in these externally provided data will seriously affect the ability of land surface models to simulate soil moisture, runoff, snow cover and latent heat flux. These externally provided data include: precipitation, radiation, temperature, wind field, humidity and pressure. The 2002 reanalysis data set of surface climate elements in western China uses Newton relaxation data assimilation method (Nudging) to combine NCEP reanalysis data and MM5 model to generate driving data with higher spatial and temporal resolution suitable for complex terrain in western China. Second, the basic parameters of the operation mode 1. Using the US PSU/NCAR mesoscale model MM5 as a simulation model; The selection of simulation grid domain: center (32°N, 90°E), grid distance of 36km, number of horizontal grid points of 131*151, vertical resolution of 25 layers, and mode top of 100hPa;; 2. The data used for initialization are 1 * 1 GRIB grid data of NCEP in the United States. 3. The time step is 120s. Third, the physical process 1. physical process treatment of cloud and precipitation: Grell cumulus cloud parameterization scheme is adopted for sub-grid scale precipitation, and Reisner mixed phase microphysical explicit scheme is adopted for distinguishable scale precipitation; 2. MRF parameterization scheme is adopted for planetary boundary layer process. 3. the radiation process adopts CCM2 radiation scheme. IV. File Format and Naming It is stored in a monthly folder and contains 24 hours of data every day. The naming rules are as follows: 2002***&.forc, where * * * is Julian day and 2002***& is time (in hours), where. forc is the file extension. V. data format Stored in binary floating point type, each data takes up 4 bytes.
LONG Xiao, QIU Chongjian
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn