1) Data content: CT scan dataset of vegetation-soil-rock three-dimensional spatial structure of typical watersheds in Qilian Mountains, the data includes the volume density of moss layers at different depths, soil macroporosity and soil gravel volume density data in typical watersheds of Qilian Mountains; 2) Data Source and processing method: The moss layer and the undisturbed soil column with a depth of 30 cm under the moss cover were collected in a typical small watershed of the Qilian Mountains, and the moss layer and the undisturbed soil column were scanned with an industrial X-ray three-dimensional microscope; 3) Data quality description: The resolution of moss layer is 40 μm, and the resolution of undisturbed soil column is 68 μm; 4) Data application results and prospects: CT scan data set of vegetation-soil-rock three-dimensional spatial structure of typical small watersheds in Qilian Mountains is suitable for ecological restoration, water resources management and utilization in Qilian Mountains. It is of great significance and can provide basic data and theoretical support for elaborating the water conservation function and mechanism of the Qilian Mountains.
HU Xia
This data is the runoff and evapotranspiration generated by the precipitation in the growing season of the upper reaches of Heihe River from 1992 to 2015. Temporal resolution: year (growingseason), spatial resolution: 0.00833°. The data include precipitation (mm), evapotranspiration (mm), runoff (mm) and soil water content (m3 / m3). The data are obtained by using meteorological, soil and vegetation parameters based on Eagleson eco hydrological model. The simulated rainfall runoff is verified by using the observed runoff data in the growing season of 6 sub basins in the upper reaches of Heihe River (Heihe main stream, Babao River, yeniugou, Liyuan River, Wafangcheng and Hongshui River). The variation range of correlation coefficient (R) is 0.53-0.74, RMSE is 32.46-233.18 mm, and the relative error range is -0.66-0.0005; The difference between simulated evapotranspiration and gleam et is − 115.36 mm to 44.1 mm. The simulation results can provide some reference for hydrological simulation in the upper reaches of Heihe River.
ZHANG Baoqing
"One belt, one road" delineation of the key Asian regional watershed boundaries is based on the following principles: Principle 1: along the Silk Road Principle 2: located in arid and semi-arid areas Principle 3: high water risk Principle 4: watershed integrity 1. Division basis of arid area Food and Agriculture Organization of the United Nations. FAO GEONETWORK. Global map of aridity - 10 arc minutes (GeoLayer). (Latest update: 04 Jun 2015) Accessed (6 Mar 2018). URI: http://data.fao.org/ref/221072ae-2090-48a1-be6f-5a88f061431a.html?version=1.0 2. Water resources risk data: Gassert, F., M. Landis, M. Luck, P. Reig, and T. Shiao. 2014. Aqueduct Global Maps 2.1. Working Paper. Washington, DC: World Resources Institute. 3. Poverty index data: Elvidge C D, Sutton P C, Ghosh T, et al. A global poverty map derived from satellite data. Computers & Geosciences, 2009, 35(8): 1652-1660. https://www.ngdc.noaa.gov/eog/dmsp/download_ poverty.html 4. Basic basin boundary data: (1) Watershed boundaries were derived from HydroSHEDS drainage basins data (Lehner and Grill 2013) based on a grid resolution of 15 arc-seconds (approximately 500 m at the equator), which can be free download via https://hydrosheds.cr.usgs.gov/hydro.php (2) AQUASTAT Hydrological basins: This dataset is developed as part of a GIS-based information system on water resources. It has been published in the framework of the AQUASTAT - programme of the Land and Water Division of the Food and Agriculture Organization of the United Nations. The map is also available in the SOLAW Report 15: “Sustainable options for addressing land and water problems – A problem tree and case studies”. Data can be free download via http://www.fao.org/nr/water/aquamaps/ (3) HydroBASINS: https://www.hydrosheds.org/downloads 5. The GloRiC provides a database of river types and sub-classifications for all river reaches globally. https://www.hydrosheds.org/page/gloric 6. HydroATLAS offers a global compendium of hydro-environmental sub-basin and river reach characteristics at 15 arc-second resolution. https://www.hydrosheds.org/page/hydroatlas It covers an area of 1469400 square kilometers, including the following areas: Nujiang River Basin, Dead Sea basin, Sistan River Basin, Yellow River Basin, Jordan Syria eastern basin, Indus River Basin, Iran inland flow area, urmiya Lake Basin, Shiyang River Basin, hallelud mulgarb River Basin, Lianghe River Basin, Shule River Basin, Heihe River Basin, issekkor Lake Basin, Tata River Basin Limu River Basin, Turpan Hami basin, Ebinur Lake Basin, Junggar basin, Amu Darya River Basin, Manas River Basin, ulungu River Basin, Emin River Basin, Chu River Talas River Basin, Xil River Basin, Ili River Basin, Caspian Sea basin, Lancang River Basin, Yangtze River Basin, Qinghai lake water system, Eastern Qaidam Basin, western Qaidam Basin and Qiangtang plateau District, Yarlung Zangbo River Basin
RAN Youhua, WANG Lei, ZENG Tian, GE Chunmei, LI Hu
This data includes the daily average water temperature data at different depths of Nam Co Lake in Tibet which is obtained through field monitoring. The data is continuously recorded by deploying the water quality multi-parameter sonde and temperature thermistors in the water with the resolution of 10 minutes and 2 hours, respectively, and the daily average water temperature is calculated based on the original observed data. The instruments and methods used are very mature and data processing is strictly controlled to ensure the authenticity and reliability of the data; the data has been used in the basic research of physical limnology such as the study of water thermal stratification, the study of lake-air heat balance, etc., and to validate the lake water temperature data derived from remote sensing and different lake models studies. The data can be used in physical limnology, hydrology, lake-air interaction, remote sensing data assimilation verification and lake model research.
WANG Junbo
This data includes the basic terrain data, soil data, meteorological data, land use / land cover data, etc. needed for SWAT model operation. All maps and relevant point coordinates (meteorological station, hydrological station) adopt the coordinate system of Gauss Kruger projection which is consistent with the basic topographic map of our country. Data content includes: a) The basic topographic data include DEM and river network. The size of DEM grid is 50 * 50m, and the drainage network is manually digitized from 1:100000 topographic map. b) Soil data: including soil physics, soil chemistry and spatial distribution of soil types. The scale of digital soil map is 1:1 million, which is converted into grid format of ESRI, with grid size of 50 * 50m. Each soil profile can be divided into up to 10 layers. The sampling index of soil texture required by the model adopts the American Standard. The parameters are from the second National Soil Census data and related literature. c) Meteorological data: (1) Temperature: the data of daily maximum temperature, daily minimum temperature, wind speed and relative humidity are from the daily observation data of Qilian, Shandan, tole, yeniugou and Zhangye meteorological stations in and around the basin, with the period from 1999 to 2001. (2) Precipitation: the rainfall data comes from five hydrological stations in and around the basin, i.e. OBO (1990-1996), Sunan (1990-2000), Qilian (1990-2000), Yingluoxia (1990-2000), zamashk (1990-2000), Shandan (1999-2001), tole (1999-2001), yeniugou (1999-2001), Zhangye (1999-2001) and Qilian County (1999-2001) Observation data. (3) Wind speed and relative humidity: wind speed and relative humidity come from the daily observation data of 5 meteorological stations in Shandan, tole, yeniugou, Zhangye and Qilian county. The period is from 1999 to 2001. (4) Solar radiation: solar radiation has no corresponding observation data and is generated by model simulation. d) Land use / land cover: 1995 land use data, scale 1:100000. Convert it to grid format of ESRI, with grid size of 50 * 50m. e) Meteorological data simulation tool (weather generator) database: the weather data simulation tool of SWAT model can simulate and calculate the daily meteorological input data required by the model operation according to the monthly statistical data for many years without the actual daily observation data, and can also carry out the interpolation of incomplete observation data. The meteorological data are from the surrounding meteorological stations.
NAN Zhuotong
1. Data overview: this data is the blue and green water data of Heihe River Basin simulated by SWAT model; 2. Data content: data mainly includes blue-green water and green water coefficient of the whole basin and each sub Basin; 3. Spatial and temporal scope: the data time is from 1975 to 2004, and the spatial scope includes 34 sub basins and the whole Heihe River Basin; 4. Data file: the relevant data is placed in the Swat folder, including the sub_basin folder (sub basin distribution map), "blue and green water of the whole Heihe River Basin" folder and "blue and green water of each hydrological response unit of the Heihe River Basin" folder.
LIU Junguo
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn