The study of magmatic mixing is of great significance to reveal the interaction between crust and mantle and to explore the process of diagenesis and mineralization. Jiama mining area is located in the eastern section of Gangdise metallogenic belt. It is a super large porphyry skarn type copper polymetallic deposit. Dark inclusions are widely developed in the medium acid magmatic rocks in the mining area. Detailed petrography, rock geochemistry, Sr Nd isotope geochemistry and U-Pb isotope geochronology are carried out for the diorite inclusions in the dark inclusions in order to find out the genesis of the rocks, It provides enlightenment for magmatic mixing and mineralization, and improves the Jiama diagenesis and mineralization model. The analysis and testing of major and trace elements in rocks were completed in Beijing Institute of geology of nuclear industry. Zircon U-Pb isotopic dating was completed in the deposit geochemical microanalysis room of the State Key Laboratory of geological processes and mineral resources of China University of Geosciences (Beijing). The laser denudation system used for isotopic dating is the geolas193 excimer solid injection system made in the United States, ICP-MS is a Thermo Fisher X Series II quadrupole plasma mass spectrometer produced in the United States. Good data quality.
ZHANG Zebin , WANG Liqiang
The data include the carbonate content, carbon isotope and oxygen isotope analysis results of inorganic carbonates of 79 samples from 850 m natural section of the middle late Eocene in the salkuli basin. The carbon and oxygen isotopes of carbonate in the sediments record the hydrological and vegetation information in the geological history, which is one of the main indicators of paleoenvironmental tracer research. After grinding and sieving, the carbon and oxygen isotope analysis is completed by the sample processing unit (carbonate device) and MAT252 isotope mass spectrometry online automatic online system. The analytical accuracy of the sample is: carbon isotope is better than ± 0.06 ‰, and oxygen isotope is better than ± 0.08 ‰. Through the analysis of carbon and oxygen isotope data of solkuli section, the evolution history of arid environment since Eocene can be reconstructed, and the paleoclimate effect of the Tibetan Plateau uplift and global climate change can be discussed.
SUN Jimin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn