Land surface temperature (LST) is a key parameter in the study of surface energy balance. It is widely used in the fields of meteorology, climate, hydrology, agriculture and ecology. As an important means to obtain global and regional scale LST information, satellite (thermal infrared) remote sensing is vulnerable to the influence of cloud cover and other atmospheric conditions, resulting in temporal and spatial discontinuity of LST remote sensing products, which greatly limits the application of LST remote sensing products in related research fields. The preparation of this data set is based on the empirical orthogonal function interpolation method, using Terra / Aqua MODIS surface temperature products to reconstruct the lst under ideal clear sky conditions, and then using the cumulative distribution function matching method to fuse era5 land reanalysis data to obtain the lst under all-weather conditions. This method makes full use of the spatio-temporal information of the original MODIS remote sensing products and the cloud impact information in the reanalysis data, alleviates the impact of cloud cover on LST estimation, and finally reconstructs the high-quality global 0.05 ° spatio-temporal continuous ideal clear sky and all-weather LST data set. This data set not only realizes the seamless coverage of space-time, but also has good verification accuracy. The reconstructed ideal clear sky LST data in the experimental areas of 17 land cover types in the world, the average correlation coefficient (R) is 0.971, the bias (bias) is -0.001 K to 0.049 K, and the root mean square error (RMSE) is 1.436 K to 2.688 K. The verification results of the reconstructed all-weather LST data and the measured data of ground stations: the average R is 0.895, the bias is 0.025 K to 2.599 K, and the RMSE is 4.503 K to 7.299 K. The time resolution of this data set is 4 times a day, the spatial resolution is 0.05 °, the time span is 2002-2020, and the spatial range covers the world.
ZHAO Tianjie, YU Pei
Land surface temperature (LST) is one of the important parameters of the interface between the earth's surface and atmosphere. It is not only the direct reflection of the interaction between the surface and the atmosphere, but also has a complex feedback effect on the earth atmosphere process. Therefore, land surface temperature is not only a sensitive indicator of climate change and an important prerequisite for mastering the law of climate change, but also a direct input parameter of many models, which has been widely used in many fields, such as meteorology, climate, environmental ecology, hydrology and so on. With the deepening and refinement of Geosciences and related fields, there is an urgent need for all weather LST based on satellite remote sensing. The generation principle of this dataset is a satellite thermal infrared remote sensing reanalysis data integration method based on a new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. The method makes full use of the high-frequency and low-frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data, and finally reconstructs a high-quality all-weather land surface temperature data set. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST is used as reference, the mean deviation (MBE) of the data set is 0.08k to 0.16k, and the standard deviation of deviation (STD) is 1.12k to 1.46k. Compared with the daily 1km AATSR LST product released by ESA, the MBE and STD of the product are -0.21k to 0.25k and 1.27k to 1.36k during the day and night. Based on the measured data of 15 stations in Heihe River Basin, Northeast China, North China and South China, the test results show that the MBE is -0.06k to -1.17k, and the RMSE is 1.52k to 3.71k, and there is no significant difference between clear sky and non clear sky. The time resolution of this data set is twice a day, the spatial resolution is 1km, and the time span is from 2000 to 2021; The spatial scope includes the main areas of China's land (including Hong Kong, Macao and Taiwan, excluding the islands in the South China Sea) and the surrounding areas (72 ° E-135 ° E,19 ° N-55 ° N)。 This dataset is abbreviated as trims LST (thermal and reality integrating modem resolution spatial sealing LST) for users to use. It should be noted that the spatial subset of trims LST, trims lst-tp (1 km daily land surface temperature data set in Western China, trims lst-tp; 2000-2021) V2) has also been released in the national Qinghai Tibet Plateau scientific data center to reduce the workload of data download and processing for relevant users.
ZHOU Ji, ZHANG Xiaodong, TANG Wenbin, DING Lirong, MA Jin , ZHANG Xu
Vulnerability refers to a property of the system that is susceptible to changes in structure and function due to the system's sensitivity to internal and external disturbances and its lack of ability to respond, that is, the ability of the region to cope with disasters to reduce losses when heat waves occur. This dataset is based on the pan-third pole regional road network data, GDP data, medical facility spatial distribution data, vegetation coverage data, and water distribution data as basic data,and takes 2015 as the base year. The Euclidean Metric calculation method is adopted to determine the spatial distribution of road networks, water and medical facilities in the area. The distance from roads, water bodies, medical facilities, GDP, and vegetation coverage are used as evaluation indicators. The equal-weight overlapping addition is used to evaluate the vulnerability of heat waves at each node. In order to eliminate the impact of unit differences, the data of each index layer is normalized before the evaluation.Finally, the vulnerability level of each node is divided by the natural Jenks method.
GE Yong, YANG Fei, LIU Qingsheng
The data comes from the National Centers for environmental information (NCEI), which provides meteorological records of all stations in the world since they were built, including temperature, wind speed, dew point, precipitation and other information. There are four recorded stations near Dhaka city. The monitoring data of meteorological stations have the characteristics of high precision. Firstly, the monitoring data of stations in the world are downloaded from NCEI, and then four stations in Dhaka city are selected according to longitude and latitude. The data level records the daily meteorological station monitoring data from January 1, 2016 to December 31, 2019.
GE Yong, YANG Fei
The data source of this data set is the first, second and third bands of the atmospheric top layer reflectance data of Landsat-5 satellite. Landsat satellite is a sun synchronous satellite. The satellite moves from north to south. The earth rotates from west to East. The satellite circles the earth 14.5 times a day. Each circle moves 159km to the west of the equator. It covers every 16 days repeatedly. This data set mainly covers Dhaka City, Bangladesh. Based on the top layer reflectance data of Landsat-5 atmosphere in 2010, this data is downloaded from the geospatial data cloud platform, and uses ArcGIS to synthesize the data band. Finally, the 30 meter resolution multispectral remote sensing image data of Dhaka area 2010 in TIFF format is obtained.
GE Yong, YANG Fei
The data sources of this dataset are the first to seventh bands of the top-of-atmosphere (TOA) reflectance data of Landsat-5 and landsat-8 satellites. Landsat satellites are sun synchronous satellite with a repetition period of 16 days. Based on the data of Landsat-5 and landsat-8 TOA reflectance from 2000 to 2016, this dataset mainly covers the pan third polar key points region in Southeast Asia and the Middle East. It uses Google Earth engine cloud computing platform to clip the data of the study area, and finally gets the 30-meter resolution multi spectral remote sensing image data of the pan third polar region 2000-2016 in TIFF format.
GE Yong, LING Feng, ZHANG Yihang
The data sources of this dataset are the first to seventh bands of the top-of-atmosphere (TOA) reflectance data of Landsat-5 and landsat-8 satellites. Landsat satellites are sun synchronous satellite with a repetition period of 16 days. Based on the data of Landsat-5 and landsat-8 TOA reflectance from 2000 to 2016, this dataset mainly covers the pan third polar key points region in Southeast Asia and the Middle East. It uses Google Earth engine cloud computing platform to clip the data of the study area, and finally gets the 30-meter resolution multi spectral remote sensing image data of the pan third polar region 2000-2016 in TIFF format.
GE Yong, LING Feng, ZHANG Yihang
The data sources of this dataset are the first to seventh bands of the top-of-atmosphere (TOA) reflectance data of Landsat-5 and landsat-8 satellites. Landsat satellites are sun synchronous satellite with a repetition period of 16 days. Based on the data of Landsat-5 and landsat-8 TOA reflectance from 2000 to 2016, this dataset mainly covers the pan third polar key points region in Southeast Asia and the Middle East. It uses Google Earth engine cloud computing platform to clip the data of the study area, and finally gets the 30-meter resolution multi spectral remote sensing image data of the pan third polar region 2000-2016 in TIFF format.
GE Yong, LING Feng, ZHANG Yihang
The data sources of this dataset are the first to seventh bands of the top-of-atmosphere (TOA) reflectance data of Landsat-5 and landsat-8 satellites. Landsat satellites are sun synchronous satellite with a repetition period of 16 days. Based on the data of Landsat-5 and landsat-8 TOA reflectance from 2000 to 2016, this dataset mainly covers the pan third polar key points region in Southeast Asia and the Middle East. It uses Google Earth engine cloud computing platform to clip the data of the study area, and finally gets the 30-meter resolution multi spectral remote sensing image data of the pan third polar region 2000-2016 in TIFF format.
GE Yong, LING Feng, ZHANG Yihang
The Qinghai Tibet Plateau is a sensitive region of global climate change. Land surface temperature (LST), as the main parameter of land surface energy balance, characterizes the degree of energy and water exchange between land and atmosphere, and is widely used in the research of meteorology, climate, hydrology, ecology and other fields. In order to study the land atmosphere interaction over the Qinghai Tibet Plateau, it is urgent to develop an all-weather land surface temperature data set with long time series and high spatial-temporal resolution. However, due to the frequent cloud coverage in this region, the use of existing satellite thermal infrared remote sensing land surface temperature data sets is greatly limited. Compared with the previous version released in 2019, Western China Daily 1km spatial resolution all-weather land surface temperature data set (2003-2018) V1, this data set (V2) adopts a new preparation method, namely satellite thermal infrared remote sensing reanalysis data integration method based on new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. This method makes full use of the high frequency and low frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST was used as the reference value, the mean deviation (MBE) of the data set in daytime and nighttime was -0.28 K and -0.29 K respectively, and the standard deviation (STD) of the deviation was 1.25 K and 1.36 K respectively. The test results based on the measured data of six stations in the Qinghai Tibet Plateau and Heihe River Basin show that under clear sky conditions, the data set is highly consistent with the measured LST in daytime / night, and its MBE is -0.42-0.25 K / - 0.35-0.19 K; The root mean square error (RMSE) was 1.03 ~ 2.28 K / 1.05 ~ 2.05 K; Under the condition of non clear sky, the MBE of this data set in daytime / night is -0.55 ~ 1.42 K / - 0.46 ~ 1.27 K; The RMSE was 2.24-3.87 K / 2.03-3.62 K. Compared with the V1 version of the data, the two kinds of all-weather land surface temperature show the characteristics of seamless (i.e. no missing value) in the spatial dimension, and in most areas, the spatial distribution and amplitude of the two kinds of all-weather land surface temperature are highly consistent with MODIS land surface temperature. However, in the region where the brightness temperature of AMSR-E orbital gap is missing, the V1 version of land surface temperature has a significant systematic underestimation. The mass of trims land surface temperature is close to that of V1 version outside AMSR-E orbital gap, while the mass of trims is more reliable inside the orbital gap. Therefore, it is recommended that users use V2 version. The time span of this data set is from 2000 to 2021 and will be updated continuously; The time resolution is twice a day (corresponding to the two transit times of aqua MODIS in the daytime and at night); The spatial resolution is 1 km. In order to facilitate the majority of colleagues to carry out targeted research around the Qinghai Tibet Plateau and its adjacent areas, and reduce the workload of data download and processing, the coverage of this data set is limited to Western China and its surrounding areas (72 ° E-104 ° E,20 ° N-45 ° N)。 Therefore, this dataset is abbreviated as trims lst-tp (thermal and reality integrating modem resolution spatial seamless LST – Tibetan Plateau) for user's convenience.
ZHOU Ji, ZHANG Xiaodong, TANG Wenbin, DING Lirong, MA Jin , ZHANG Xu
This dataset contains monthly 0.05°×0.05° (1982, 1985, 1990, 1995, and 2000), 0.01°×0.01° (2005, 2010, 2015, 2017 and 2018), and daily 0.01°×0.01° (2018) LST products in Qilian Mountain Area. The dataset was produced based on SW algorithm by AVHRR BT from thermal infrared channels (CH4: 10.5µm to 11.3µm; CH5: 11.5µm to 12.5µm) at a resolution of 0.05°, MYD21A1 LST products at a resolution of 0.01° along with some auxiliary datasets. The auxiliary datasets include IGBP land cover type, AVHRR NDVI products, Modern Era Retrospective-Analysis for Research and Applications-2 (MERRA-2) reanalysis data, ASTER GED, Lat/Lon and the Julian Day information.
LI Hua
"Coupling and Evolution of Hydrological-Ecological-Economic Processes in Heihe River Basin Governance under the Framework of Water Rights" (91125018) Project Data Convergence-MODIS Products-Land Use Data in Northwest China (2000-2010) 1. Data summary: Land Use Data in Northwest China (2000-2010) 2. Data content: Land use data of Shiyanghe River Basin, Heihe River Basin and Shulehe River Basin in Northwest China from 2000 to 2010 obtained by MODIS
WANG Zhongjing
This data is 2002.07.04-2010.12.31 MODIS daily cloudless snow products in the Tibetan Plateau. Due to the snow and cloud reflection characteristics, the use of optical remote sensing to monitor snow is severely disturbed by the weather. This product is based on the most commonly used cloud removal algorithm, using the MODIS daily snow product and passive microwave data AMSR-E snow water equivalent product, and the daily cloudless snow product in the Tibetan Plateau is developed. The accuracy is relatively high. This product has important value for real-time monitoring of snow cover dynamic changes on the Tibetan Plateau. Projection method: Albers Conical Equal Area Datum: D_Krasovsky_1940 Spatial resolution: 500 m Data format: tif Naming rules: maYYMMDD.tif, where ma represents the data name; YY represents the year (01 represents 2001, 02 represents 2002 ...); MM represents the month (01 represents January, 02 represents February ...); DD represents the day (01 Means 1st, 02 means 2nd ...).
HUANG Xiaodong
This dataset includes passive microwave remote sensing brightness temperatures data for longitude and latitude projections and 0.25 degree resolution from 2002 to 2008 in China. 1. Data processing process: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method. 2. Data format: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3. Data naming: ID2rx-AMSRE-aayyyydddp.vnn.ccc (China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4. Cutting range: Corner Coordinates: Upper Left (60.0000000, 55.0000000) (60d 0'0.00 "E, 55d 0'0.00" N) Lower Left (60.0000000, 15.0000000) (60d 0'0.00 "E, 15d 0'0.00" N) Upper Right (140.0000000, 55.0000000) (140d 0'0.00 "E, 55d 0'0.00" N) Lower Right (140.0000000, 15.0000000) (140d 0'0.00 "E, 15d 0'0.00" N) Center (100.0000000, 35.0000000) (100d 0'0.00 "E, 35d 0'0.00" N) Origin = (60.000000000000000, 55.000000000000000) 5. Data projection: GEOGCS ["WGS 84", DATUM ["WGS_1984", SPHEROID ["WGS 84", 6378137,298.257223563, AUTHORITY ["EPSG", "7030"]], TOWGS84 [0,0,0,0,0,0,0], AUTHORITY ["EPSG", "6326"]], PRIMEM ["Greenwich", 0, AUTHORITY ["EPSG", "8901"]], UNIT ["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY ["EPSG", "4326"]]
Mary Jo Brodzik, Matthew Savoie, Richard Armstrong, Ken Knowles
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn