This data includes bacterial 16S ribosomal RNA gene sequence data from 25 lakes in the middle of the Qinghai Tibet Plateau. The sample was collected from July to August 2015, and the surface water was sampled three times with a 2.5 liter sampler. The samples were immediately taken back to the Ecological Laboratory of the Beijing Qinghai Tibet Plateau Research Institute, and the salinity gradient of the salt lake was 0.14~118.07 g/L. This data is the result of amplification sequencing. Concentrate the lake water to 0.22 at 0.6 atm filtration pressure μ The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGCGGTAA-3') and 909r (5 '- GGACTACHVGGGTWTCTAAT-3'). The Illumina MiSeq PE250 sequencer was used for end-to-end sequencing. The original data was analyzed by Mothur software. The sequence was compared with the Silva128 database and divided into operation classification units (OTUs) with 97% homology. This data can be used to analyze the microbial diversity of lakes in the Qinghai Tibet Plateau.
KONG Weidong
This data includes: 30m mountain flood comprehensive risk data, 30m mountain flood risk data, 30m mountain flood disaster bearing body data and 30m mountain flood vulnerability distribution data in the Himalayas. Based on the results of national investigation and evaluation of mountain flood disasters, the distribution of comprehensive risk indicators of mountain flood disasters in the study area, the distribution of mountain flood risk indicators in each administrative village, the distribution of mountain flood disaster bearing body indicators and the distribution of mountain flood vulnerability indicators are obtained, forming the comprehensive risk distribution data of mountain flood disasters in the Himalayas. This data is helpful to analyze the spatial variation characteristics and distribution law of mountain flood disaster. The zoning of mountain flood disaster risk plays a guiding role in the flood control management and deployment of flood control emergency departments.
WANG Zhonggen
1. The data content includes: year, month, day, hour, longitude, latitude, altitude, meridional (UQ) and latitudinal (VQ) components of water vapor flux; 2. Data source and processing method: GPS meteorological sounding data of voyages in the eastern Indian Ocean, and calculate water vapor flux through relative humidity, wind field, air pressure and altitude; 3. Data quality description: vertical continuous observation with 1 second vertical resolution; 4. Data application achievements and prospects: Study on the changes of water vapor transport in the tropical Indian Ocean;
LIU Zhaofei, YAO Zhijun
The data are phytoplankton data of 61 sites in 23 lakes in Tibetan in 2019. The sampling time is from August to September in 2019. The sampling method is conventional phytoplankton sampling method. During the sampling process, 1 liter of water sample is collected, fixed by Lugo's solution, static sedimentation, siphon concentration, and inverted microscope is used for identification. The data include 6 phyla, such as Bacillariophyta, Chlorophyta, cyanobacteria, Pyrrophyta, Euglenophyta and Cryptophyta, and different phytoplankton species. The data is the original data, which has not been processed, and the unit is individuals / L. The data can be used to characterize the composition and abundance of phytoplankton in the open water area of these lakes, and can also be used to calculate the diversity of phytoplankton community in these lakes.
ZHANG Min
Lake salinity is an important parameter of lake water environment, an important embodiment of water resources, and an important part of climate change research. This data is based on the measured salinity data of lakes in the Qinghai Tibet Plateau. The salinity is characterized by the practical salinity unit (PSU), which is converted from the specific conductivity (SPC) measured by the conductivity sensor. ArcGIS software was used to convert the measured data into space vector format. SHP format, and the measured salinity spatial distribution data file was obtained. The data can be used as the basic data of lake environment, hydrology, water ecology, water resources and other related research reference.
ZHU Liping
This dataset provides the in-situ lake water parameters of 124 closed lakes with a total lake area of 24,570 km2, occupying 53% of the total lake area of the TP.These in-situ water quality parameters include water temperature, salinity, pH,chlorophyll-a concentration, blue-green algae (BGA) concentration, turbidity, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), and water clarity of Secchi Depth (SD).
ZHU Liping
This data includes the benthos data of 21 lakes around Selinco and Namco in 2019. The sampling mainly uses bottom trawl in the littoral zone and Ekman collector in the deep-water area. After integrating the materials obtained by the two ways, the relative abundance of benthos data of each lake is given. The main benthos species are Gammarus, water beetles, and chironomid larvae. However, the frequency of Gastropoda and Ostracoda is low, which may be related to the sampling sites. The data further divided different types of benthos into 21 taxa, which improved the recognition accuracy and cognitive range and would provide a reference for the assessment of aquatic animal diversity and fishery resources in plateau lakes.
TANG Hongqu
The data includes: zooplankton species list; zooplankton density; microscopy; high-throughput sequencing; complete data; constructing an original data set for lakes on the Qinghai-Tibet Plateau. Zooplankton is an indispensable link in lake water ecological investigation, and it is a link between the system The location of the food web is an important carrier for the material circulation and energy flow of the food web. The systematic investigation and study of the composition and biodiversity of the zooplankton in the lakes on the Qinghai-Tibet Plateau is particularly important for understanding the stability and resilience of the lake ecosystem on the Qinghai-Tibet Plateau. In addition, Zooplankton are very sensitive to environmental changes, and changes in their structure and functional groups can indicate the intensity and magnitude of environmental pressure.
LI Yun
Land surface temperature (LST) is a key variable for high temperature and drought monitoring and climate and ecological environment research. Due to the sparse distribution of ground observation stations, thermal infrared remote sensing technology has become an important means of quickly obtaining ground temperature over large areas. However, there are many missing and low-quality values in satellite-based LST data because clouds cover more than 60% of the global surface every day. This article presents a unique LST dataset with a monthly temporal resolution for China from 2003 to 2017 that makes full use of the advantages of MODIS data and meteorological station data to overcome the defects of cloud influence via a reconstruction model. We specifically describe the reconstruction model, which uses a combination of MODIS daily data, monthly data and meteorological station data to reconstruct the LST in areas with cloud coverage and for grid cells with elevated LST error, and the data performance is then further improved by establishing a regression analysis model. The validation indicates that the new LST dataset is highly consistent with in situ observations. For the six natural subregions with different climatic conditions in China, verification using ground observation data shows that the root mean square error (RMSE) ranges from 1.24 to 1.58 K, the mean absolute error (MAE) varies from 1.23 to 1.37 K and the Pearson coefficient (R2) ranges from 0.93 to 0.99. The new dataset adequately captures the spatiotemporal variations in LST at annual, seasonal and monthly scales. From 2003 to 2017, the overall annual mean LST in China showed a weak increase. Moreover, the positive trend was remarkably unevenly distributed across China. The most significant warming occurred in the central and western areas of the Inner Mongolia Plateau in the Northwest Region, and the average annual temperature change is greater than 0.1K (R>0:71, P<0:05), and a strong negative trend was observed in some parts of the Northeast Region and South China Region. Seasonally, there was significant warming in western China in winter, which was most pronounced in December. The reconstructed dataset exhibits significant improvements and can be used for the spatiotemporal evaluation of LST in high-temperature and drought-monitoring studies. More detail please refer to Zhao et al (2020). doi.org/10.5281/zenodo.3528024
MAO Kebiao
The Land Surface Temperature in China dataset contains land surface temperature data for China (about 9.6 million square kilometers of land) during the period of 2003-2017, in Celsius, in monthly temporal and 5600 m spatial resolution. It is produced by combing MODIS daily data(MOD11C1 and MYD11C1), monthly data(MOD11C3 and MYD11C3) and meteorological station data to reconstruct real LST under cloud coverage in monthly LST images, and then a regression analysis model is constructed to further improve accuracy in six natural subregions with different climatic conditions.
MAO Kebiao
The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.
DONG Lingxiao
The dataset includes vector map of the lakes larger than 1k㎡ on Tibetan Plateau in 1970s, 1990, 2000, 2010. The lake boundry data was extracted from remote sensing image like Landsat MSS, TM, ETM+, by means of visual interpretation. The data type is vector data, and it's attribute class includes Area (km²). The Projected Coordinate System is Albers Conical Equal Area. It is mainly used in the study of changes in lakes, hydrological and meteorological on the Tibetan Plateau.
ZHANG Guoqing
In May and September 2018, fish in Tibetan lakes were collected by net-catching and electric-catching methods. The sampling range from east to west can be roughly summarized into three areas: the Qiangtang Plateau in northern Tibet, southern Tibet and the angle between Kunlun Mountains and Karakoram Mountains. A total of 27 lakes have captured fish. The specimens include more than 2,000 specimens of the genus Triplophysa and more than 600 specimens of subfamily Schizothoracinae. This work is a part of the project of “Building Methods for Detection of Aquatic Organisms in the Lake System of the Qinghai-Tibet Plateau”, using traditional fish survey data to generate a list of species in the lake system, which will then be used to combine multiple lakes in Medog and the plateaus. High-throughput molecular data acquired from the system's environmental water samples and tested for visual parameters (lake size, isolation, geographic location, and spectral characteristics) that can be used to predict aquatic biodiversity.
LIU Shuwei
Inland water system and river basin regional dataset are the key hydrological parameters in the study of global change. Waterr distribution is of great significance to the study of the characteristics, morphological characteristics, changes, time distribution of various types of water bodies at the nodes, and the law of regional differentiation. The basic data is downloaded from DIVA-GIS, and is subset and resampled by administrative boundary dataset of all 31 key nodes as the research areas. The data concludes the distribution of lakes and reservoirs (planar River system) and rivers (linear River basin) . Finally, the data of water system and river basin in 31 key node regions are stored and obtained. This data set serves as the research basis for all hydrological remote sensing data and provides hydrological base data for the project. This data set can be updated in real time according to the government information and the changing trend of water system where node is located.
SHANG Cheng
The concentration data set of persistent organic pollutants in the atmosphere, lake water and fish bodies in Namco from 2012 to 2014 includes concentration time series of atmospheric gaseous organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), atmospheric gaseous polycyclic aromatic hydrocarbons (PAHs), atmospheric particulate PAHs, dissolved persistent organic pollutants (POPs) in lake water, POPs in suspended particles of lake water and POPs in bodies of Gymnocypris namensis. The contents of the data set are all measured data. (1) The atmospheric samples were collected from the Integrated Observation and Research Station of Multisphere in Namco by the atmospheric active sampler. The flow rate of the sampler is 60 L min-1, which collects data every other day. One sample is generated every half month, and the sampling volume is approximately 600 m³. Each sample includes a glass fiber filter (GFF, 0.45 μm, Whatman) that adsorbs particulate POPs and a polyurethane foam (PUF, 7.5 x 6 cm) that collects gaseous POPs. (2) Fifteen sampling points were selected along Namco to collect surface lake water samples at a water depth of 0-1 m and with a volume of 200 L. The total suspended particulates are obtained by filtering the water samples with a 0.7 μm GFF membrane, and then the dissolved POPs in the water are collected using a solid phase extraction column packed with XAD-2. (3) Gymnocypris namensis is the most widely distributed fish in Namco. A total of 35 samples of different sizes were collected, and the concentration of POPs in the back muscle samples was analyzed. Each medium sample was prepared and analyzed by the Key Laboratory of Tibetan Environment Changes and Land Surface Processes of CAS. The sample preparation steps include Soxhlet extraction, silica-alumina column purification, removal of macromolecular impurities by a GPC column, concentration and constant volume. The analytical test instrument was a gas chromatography-mass spectrometer (GC-MS, Finnigan-Trace GC/PolarisQ) manufactured by American Thermoelectric Corporation. The column separating OCPs and PCBs was a CP-Sil 8CB capillary column (50 m × 0.25 mm × 0.25 μm), and the column separating PAHs was a DB-5MS capillary column (60 m × 0.25 mm × 0.25 μm). Sampling and laboratory analysis procedures followed strict quality control measures with lab blanks and field blanks. The detection limit of the compound is the average of the concentration of the corresponding compound in the field blank plus 3 times the standard deviation; if the compound is not detected in the field blank, the signal-to-noise ratio, 10 times the lowest concentration of the working curve, will be considered as the detection limit. Data below the detection limit are considered undetected and labeled as BDL; data marked in italics are detected by 1/2 times the detection limit. The recovery of PAHs is between 65% and 92%, the recovery of OCPs is between 64% and 112%, and the sample concentration is not corrected using recovery.
WANG Xiaoping
Microbial diversity data of lakes on the Tibetan Plateau. One hundred and thirty-eight samples were collected from July 1st to July 15th, 2015, from 28 lakes (Bamco, Baima Lake, Bange Salt Lake, Bangong Lake, Bengco, Bieruozeco, Cuoeco, Cuoe (Pingcuo North), Dawaco, Dangqiongco, Dangreyongco, Dongco, Eyacuoqiong, Gongzhuco, Guogenco, Jiarebuco, Mapangyongco, Namco, Nieerco (Salt Lake), Normaco, Pengyanco, Pengco, Qiangyong, Selinco, Wuruco, Wumaco, Zharinanmuco, and Zhaxico). The salinity gradients range from 0.07-118 ppm. The DNA extraction method: The DNA was extracted using an MO BIO PowerSoil DNA kit after the lake water was filtered onto a 0.45 membrane. The 16S rRNA gene fragment amplification primers were 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3'). The sequencing method was Illumina MiSeq PE250, and the raw data were analyzed by Mothur software, including quality filtering and chimera removal. The sequence classification was based on the Silva109 database, and archaea, eukaryotic and unknown source sequences have been removed. OTUs were classified by 97% similarity, and sequences that appear once in the database were then removed. Finally, each sample was resampled to 7,230 sequences/sample. GPS coordinates, evolutionary information, and environmental factors are listed in the data.
JI Mukan
The dataset includes two parts that are: 1) channel flow, crop pattern, field management, and socio-economy data measured at super-station in 2008, 2010, 2011, 2012 (UTC+8), respectively. 2) irrigation data, crop pattern, and socio-economy data investigated at Daman irrigation district and Yingke irrigation district, respectively. 1.1 Objective of investigation Objectives of investigation for two parts data are to obtain crop pattern and irrigation water volume change with time, and to supply parameter for irrigation water optimal allocation model. 1.2 Investigation spots and items Investigation spots include six water management stations that are Dangzhai, Hua’er, Daman, Xiaoman, Jiantan, and Ershilidun, respectively, at Daman irrigation district. Investigation items comprise water allocation time, branch channel inflow, Dou channel inflow, irrigation area, channel water use efficiency, water price, and water fee. Investigation time is described as followed: 2012.03.16 to 2012.04.04, Spring irrigation; 2012.04.04 to 2012.05.14, Summer irrigation; 2012.05.20 to 2012.06.24, Summer irrigation; 2012.05.16 to 2012.07.06, Summer irrigation; 2012.07.15 to 2012.08.02, Autumn irrigation; 2012.08.10 to 2012.08.26, Autumn irrigation. Investigation spots include eight water management station that are Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, and Yangou, respectively, at Yingke irrigation district. Investigation time and items is described as followed: Year Data items Spots 2008, 2010, 2011 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Xiaoman county, Shangtouzha village 2012 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, Yangou 2012 Well data: Well deep, groundwater abstraction, irrigation area Chang’an, Liangjiadun, Shangqin 2012 Socio-economy data: population, agricultural income, un-agricultural income, water use for living, average residential area, education Chang’an, Xiaoman, Liangjiadun, Shangqin 2012 Field management: fertilizer name, fertilization time, fertilization rate, pesticide name, pesticide rate, time Chang’an, Xiaoman, Liangjiadun, Shangqin 2008, 2010, 2011, 2012 Crop pattern: crop name, seed time, harvest time, crop area, irrigation quota, field water use efficiency, crop yield, crop production value Xiaoman, Chang’an, Liangjiadun, Shangqin 1.3 Data collection Data was collected by cooperating with water management department of Yingke and Daman.
GE Yingchun, Xu Fengying, LI Xin
Data of industrial structure change and water use evolution trend of social and economic development in Heihe River Basin
DENG XiangZheng
Zhangye basin mainly includes 20 irrigation areas. Under the restriction of water diversion, the surface water consumption of the irrigation area is under control, but the groundwater exploitation is increased, resulting in the groundwater level drop in the middle reaches, resulting in potential ecological environment risks. Due to the complex and frequent exchange of surface water and groundwater in the study area, it is possible to realize the overall water resource saving by optimizing the utilization ratio of surface water and groundwater in each irrigation area. In this project, on the premise of not changing the water demand of the middle reaches irrigation area, the two problems of maximizing the outflow of Zhengyi Gorge (given groundwater reserve constraint) and maximizing the outflow of Zhengyi Gorge (given groundwater reserve constraint) are studied.
ZHENG Yi
This data is SWAT scenario simulation data in the middle and upper reaches of Heihe River Basin. Scenarios include historical trend scenario (HT), ecological protection scenario (EP), strict ecological protection scenario (SEP), economic development scenario (ED) and rapid economic development scenario (red). Firstly, the dyna_clue model is used to simulate the land use change under different scenarios, and then the simulated land use map under different scenarios is imported into the SWAT model to simulate the daily and monthly runoff scenario data of the upstream outlet (Yingluo gorge) and the middle outlet (Zhengyi gorge) of the Heihe River Basin (assuming other conditions are the same). The period is 2011-2030. The data format is excel.
NAN Zhuotong, ZHANG Ling
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn