This dataset derives from the articles: (1) He, C., Liu, Z., Tian, J., & Ma, Q., (2014). Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Global change biology, 20(9), 2886-2902.(2)Xu, M., He, C., Liu, Z., Dou, Y. (2016). How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis. PLoS ONE 11 (5): e0154839. To produce this dataset, the nighttime light data, vegetation index data, and land surface temperature data were preprocessed to obtain the multi-source remote sensing data in China from 1992 to 2020, and the economic regionalization, selection of samples, support vector machine classification, and inter-annual correction were used to extract the dynamic information of urban built-up area. According to the accuracy assessment based on Landsat TM/ETM+ data, Kappa coefficient is 0.60, overall accuracy is 92.62% This dataset has been used to assess the impacts of urban expansion on natural habitats and cropland, and can provide data support for understanding China’s urban expansion and its effects.
HE Chunyang, LIU Zhifeng, XU Min , LU Wenlu
Monthly average daytime as well as nighttime data of the Universal Thermal Climate Index (UTCI) for 354 cities in China. The time range of the data is from January 2012 to December 2021, with a temporal resolution of month-by-month. The spatial resolution is 1 km. The data is mainly based on the MYD07 atmosphere profile dataset and MYD11 land surface temperature dataset provided by MODIS, and incorporates the wind speed provided by ERA5 reanalysis data. The urban boundary is demarcated according to the 2018 data provided by Global Urban Boundary-GUB dataset. All the data are resampled to 1 km, in order to maintain the uniform spatial resolution. With the rapid urbanization and global warming, the data are useful for studying the spatiotemporal patterns of urban thermal comfortable and related analysis.
王 晨光 , WANG Chenguang, WANG Chenguang, 占 文凤 ZHAN Wenfeng
This dataset includes the maximum normalized vegetation index (NDVI) data from 1982 to 2015, the maximum enhanced vegetation index (EVI) data from 2000 to 2020, and the land cover change (LUCC) data from 2001 to 2019 in the China-Mongolia-Russia Economic Corridor (CMREC). Among these, NDVI data was extracted from GIMMS satellite data with a resolution of 8 km; EVI and LUCC data were extracted from MODIS satellite data (MOD13A3 and MCD12C1) with a resolution of 1 km and 5 km, respectively. The dataset filters the outliers or missing values in the original data, which is of higher quality than the source data. Meanwhile, we adopted the maximum value composite (MVC) method to process NDVI and EVI data to obtain the annual maximum NDVI and EVI, which can better reflect the vegetation distribution and change in CMREC over the past several decades. The spatio-temporal changes of vegetation and land use extracted from satellite remote sensing data will provide scientifical guidance for the risk control and prevention of the ecological environment change in CMREC.
ZHANG Xueqin
The data set contains annual NPP-VIIRS night time light data images of equatorial northern Africa and the Sahel region from 2013 to 2020. Based on the monthly average night time light image data of visible infrared imaging radiometer Suite (VIIRS) of national polar orbiting partnership (NPP) satellite, this dataset is generated by separating the unstable night light caused by biomass combustion from the stable night light information caused by human activities. The spatial resolution of the data is 500 m, and the grid data type is GeoTIFF. The grid pixel value is radiance, and the unit is 10 − 9 w ∙ cm − 2 ∙ SR − 1. The data set improves the ability of noctilucent images to identify small-scale, scattered and unstable urban information in northern equatorial Africa and Sahel to a certain extent, and can be further applied to the research on human activities in northern equatorial Africa and Sahel.
YUAN Xiaotian , JIA Li , JIANG Min
This data is the land cover data at 30m resolution of Southeast Asia in 2015. The data format of the data is NetCDF, and the variable name is "land cover type". The data was obtained by mosaicing and extracting the From-GLC data. Several land cover types, such as snow and ice that do not exist in Southeast Asia were eliminated.The legend were reintegrated to match the new data. The data provide information of 8 land cover types: cropland, forest, grassland, shrub, wetland, water, city and bare land. The overall accuracy of the data is 71% (Gong et al., 2019). The data can provide the land cover information of Southeast Asia for hydrological models and regional climate models.
LIU Junguo
This dataset was captured during the field investigation of the Qinghai-Tibet Plateau in June 2021 using uav aerial photography. The data volume is 3.4 GB and includes more than 330 aerial photographs. The shooting locations mainly include roads, residential areas and their surrounding areas in Lhasa Nyingchi of Tibet, Dali and Nujiang of Yunnan province, Ganzi, Aba and Liangshan of Sichuan Province. These aerial photographs mainly reflect local land use/cover type, the distribution of facility agriculture land, vegetation coverage. Aerial photographs have spatial location information such as longitude, latitude and altitude, which can not only provide basic verification information for land use classification, but also provide reference for remote sensing image inversion of large-scale regional vegetation coverage by calculating vegetation coverage.
LV Changhe, ZHANG Zemin
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
This vegetation water content data set is derived from the ground synchronous observation in the Luanhe River Basin soil moisture remote sensing experiment, including 55 sampled plots.The vegetation types involved in these sampled plots include grass, corn, potatoes, naked oats and carrots. The data measurement time is from September 13, 2018 to September 26, 2018.
ZHENG Xingming, JIANG Tao
The data set was obtained from UAV aerial photography during the field investigation of the Qinghai Tibet Plateau in August 2020. The data size is 10.1 GB, including more than 11600 aerial photos. The shooting sites mainly include Lhasa, Shannan, Shigatse and other areas along the road, residential areas and surrounding areas. The aerial photos mainly reflect the local land use / cover type, facility agriculture distribution, grassland coverage and other information. The aerial photos have longitude, latitude and altitude information, which can provide better verification information for land use / cover remote sensing interpretation, and can also be used for vegetation coverage estimation, and provide better reference information for land use research in the study area.
LV Changhe, LIU Yaqun
Gwadar deep water port is located in the south of Gwadar city in the southwest of Balochistan province, Pakistan. It is 460km away from Karachi in the East and 120km away from Pakistan Iran border in the West. It is adjacent to the Arabian Sea in the Indian Ocean in the South and the Strait of Hormuz and Red Sea in the West. It is a port with strategic position far away from Muscat, capital of Oman. This data is the land cover data of Gwadar and its surrounding areas. The data is from globeland30 with a spatial resolution of 30 meters and a data format of TIFF. The classification images used in the development of globeland30 data set mainly include Landsat's TM5, ETM +, oli multispectral images and HJ-1 multispectral images. Using the Pok based classification method, the total volume accuracy is 83.50%, and the kappa coefficient is 0.78.
WU Hua
Land surface temperature (LST) is a key variable for high temperature and drought monitoring and climate and ecological environment research. Due to the sparse distribution of ground observation stations, thermal infrared remote sensing technology has become an important means of quickly obtaining ground temperature over large areas. However, there are many missing and low-quality values in satellite-based LST data because clouds cover more than 60% of the global surface every day. This article presents a unique LST dataset with a monthly temporal resolution for China from 2003 to 2017 that makes full use of the advantages of MODIS data and meteorological station data to overcome the defects of cloud influence via a reconstruction model. We specifically describe the reconstruction model, which uses a combination of MODIS daily data, monthly data and meteorological station data to reconstruct the LST in areas with cloud coverage and for grid cells with elevated LST error, and the data performance is then further improved by establishing a regression analysis model. The validation indicates that the new LST dataset is highly consistent with in situ observations. For the six natural subregions with different climatic conditions in China, verification using ground observation data shows that the root mean square error (RMSE) ranges from 1.24 to 1.58 K, the mean absolute error (MAE) varies from 1.23 to 1.37 K and the Pearson coefficient (R2) ranges from 0.93 to 0.99. The new dataset adequately captures the spatiotemporal variations in LST at annual, seasonal and monthly scales. From 2003 to 2017, the overall annual mean LST in China showed a weak increase. Moreover, the positive trend was remarkably unevenly distributed across China. The most significant warming occurred in the central and western areas of the Inner Mongolia Plateau in the Northwest Region, and the average annual temperature change is greater than 0.1K (R>0:71, P<0:05), and a strong negative trend was observed in some parts of the Northeast Region and South China Region. Seasonally, there was significant warming in western China in winter, which was most pronounced in December. The reconstructed dataset exhibits significant improvements and can be used for the spatiotemporal evaluation of LST in high-temperature and drought-monitoring studies. More detail please refer to Zhao et al (2020). doi.org/10.5281/zenodo.3528024
MAO Kebiao
The Land Surface Temperature in China dataset contains land surface temperature data for China (about 9.6 million square kilometers of land) during the period of 2003-2017, in Celsius, in monthly temporal and 5600 m spatial resolution. It is produced by combing MODIS daily data(MOD11C1 and MYD11C1), monthly data(MOD11C3 and MYD11C3) and meteorological station data to reconstruct real LST under cloud coverage in monthly LST images, and then a regression analysis model is constructed to further improve accuracy in six natural subregions with different climatic conditions.
MAO Kebiao
This dataset is the data of human activities in the key areas of Qilian Mountain in 2018, spatial resolution 2m. This dataset focuses on mine mining, urban expansion, cultivated land development, hydropower construction, and tourism development in the key areas of Qilian Mountain.Through high-resolution remote sensing images, compare the changes before and after the statistics. For the maps of the landforms in the Qilian Mountains, check and verify them one by one; re-interpret the plots that are suspicious of the map; collect the relevant data in the field that cannot be reflected by the images, check and correct the location. At the same time, unified input and editing of map attribute information. Generating a data set of human activities in the key areas of the Qilian Mountains in 2018.
QI Yuan, ZHANG Jinlong, JIA Yongjuan, ZHOU Shengming, WANG Hongwei
This dataset contains cultivated land and impermeable surface products in Qilian Mountain key Area from 1990 to 2015 every 5 years. The dataset came from land cover products in Qilian Mountain key Area.
YANG Aixia
The data set was acquired by uav aerial photography during the field investigation on the Tibetan Plateau in 2018. The data size was 5.72 GB, including more than 800 photos.The photo was taken from July 19, 2008 to July 26, 2008. The shooting locations mainly include yambajing, keshi village, apaixin village, zhongguo village, mirin village, ri village, chongkang village, kesong village, semi village, yamzhuo yoncho and the surrounding areas.Aerial photos more clearly reflect the local land cover, land use type distribution density, rivers and lakes, vegetation, etc.), work for land use remote sensing provides better validation information, can also be used for the estimation of vegetation coverage, for the study of land use in the study area provided a good reference information.
LV Changhe, LIU Yaqun
Land use data of Bishkek, with a resolution of 30 meters, was in the form of TIF and the time was 1990.03.30 and 2018.04.12, respectively.Data source GLC, the raw data of its global land cover data comes from Envisat satellite and is captured by MERIS (Medium Resolution Imaging Spectrometer) sensor.There are currently two issues, GlobCover (Global Land Cover Map) and GlobCover (Global Land Cover Product).
ESA Glob Cover, HUANG Jinchuan, MA Haitao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn