1)The datase includes a 30-year (1986-2015) average rainfall erosivity raster data for 20 countries in key regions, with a spatial resolution of 300 meters. 2)The 0.5°×0.5° grid daily rainfall data generated by the Climate Prediction Center (CPC) based on global site data was used to calculate the rainfall erosivity R factor of 20 countries in key regions. 3)The daily rainfall data of 2358 weather stations nationwide from China Meteorological Administration from 1986 to 2015 was used to calculate the R value, and the R value calculated by establishing the CPC data source was rechecked and verified. It is found that the R value calculated by the CPC data system was low, and then it was revised, and the final data obtained was of good quality. 4)Rainfall erosivity R factor can be used as the driving factor of the CSLE model, and the data is of great significance for the simulation of soil erosion in 20 countries in key regions and the analysis of its spatial pattern.
ZHANG Wenbo
Based on China's daily meteorological elements data set and National Geographic basic data, the extreme precipitation, extreme temperature, drought intensity, drought frequency and other indicators in Hengduan Mountain area were calculated by using rclimdex, nspei and bilinear interpolation methods. The data set includes basic data set of disaster pregnant environment, basic data set of extreme precipitation index, basic data set of extreme temperature index, basic data set of drought intensity and frequency. The data set can provide a basic index system for regional extreme high temperature, precipitation and drought risk assessment.
SUN Peng
Coupled Model Intercomparison Project Phase 5 (CMIP5) provides a multiple climate model environment, which can be used to predict the future climate change in the key nodes in the Belts and Road to deal with the environmental and climate problems. Key nodes in the Belt and Road are taken as the study regions of this dataset. The ability of 43 climate models in CMIP5 to predict the future climate change in the study regions was assessed and the optimal models under different scenarios were selected according to the RMSE between the prediction results and real observations. This dataset is composed of the prediciton results of precipitation and near-surface air temperature between 2006 and 2065 using the optimal models in monthly temporal frequncy. The spatial resolution of the dataset has been downscaled to 10 km using statistical downscaling method. Data of each period has three bands, namely maximum near-surface air temperature, minimum near-surface air temperature and precipitation. In this data set, the unit of precipitation is kg / (m ^ 2 * s), and the unit of near-surface air temperature is K. This dataset provides data basis for solving environmental and climate problems of the key nodes in the Belts and Road.
LI Xinyan, LING Feng
The accuracy of tropical cyclone (tropical storm) track forecasting improved by nearly 50% for lead times of 24–72 h since 1990s. Over the same period forecasting of tropical cyclone intensity showed only limited improvement. Given the limited prediction skill of models of tropical cyclone intensity based on environmental properties, there have been a wealth of studies of the role of internal dynamical processes of tropical cyclones, which are largely linked to precipitation properties and convective processes. The release of latent heat by convection in the inner core of a tropical cyclone is considered crucial to tropical cyclone intensification. 16-year satellite-based precipitation, and clouds top infrared brightness temperature were used to explore the relationship between precipitation, convective cloud, and tropical cyclone intensity change. The 6-hourly TC centers were linearly interpolated to give the hourly and half hourly tropical cyclone center positions, to match the temporal resolution of the precipitation and clouds top infrared brightness temperature. More precipitation is found as storms intensify, while tropical cyclone 24 h future intensity change is closely connected with very deep convective clouds with IR BT < 208 K. Intensifying tropical cyclones follow the occurrence of colder clouds with IR BT < 208 K with greater areal extents. As an indicator of very deep convective clouds, IR BT < 208 K is suggested to be a good predictor of tropical cyclone intensity change(Ruan&Wu,2018,GRL). The properties of the satellite-based precipitation, and clouds top infrared brightness temperature are therefore suggested to be important measurements to study tropical cyclone intensity, intensity change and their underlying mechanisms. The high resolution of the satellite-based precipitation (3h), and cloud top infrared brightness temperature (half hour) datasets also makes them possible to be used to study tropical cyclone variability associated with diurnal cycle.
WU Qiaoyan
Water scarcity,food crises and ecological deterioration caused by drought disasters are a direct threat to food security and socio-economic development. Improvement of drought disaster risk assessment and emergency management is now urgently required. This article describes major scientific and technological progress in the field of drought disaster risk assessment. Drought is a worldwide natural disaster that has long affected agricultural production as well as social and economic activities. Frequent droughts have been observed in the Belt and Road area, in which much of the agricultural land is concentrated in fragile ecological environment. The percentage of precipitation anomaly is the percentage of the precipitation between a certain period of time and the average climate precipitation of the same period divided by the average climate precipitation of the same period.Based on the daily rainfall data of GPM IMERG Final Run(GPM), this data set calculates the precipitation of the corresponding region, adopts the evaluation index of precipitation anomaly percentage grade, and analyzes the distribution characteristics of drought of different grades. The data area is 34 key nodes of the pan-third pole (Abbas, Astana, Colombo, Gwadar, Mamba, Tehran, Vientiane, etc.).
WU Hua
Data set of surface inundation caused by historical extreme precipitation evaluated the surface inundation range of One Belt And One Road key areas under extreme precipitation, providing a basis and reference for the decision-making of local government departments, so as to give early warning before the occurrence of extreme precipitation and reduce the loss of life and property caused by extreme precipitation.This data set to the extreme precipitation threshold set "and" the extreme precipitation recognition "as the foundation, to confirm the extreme precipitation time node and the area, and then to NASA's web site to download the submerged range products corresponding to the time and region, combining ArcGIS spatial analysis was used to connect the above data, build the data sets of historical extreme precipitation caused surface submerged range for 34 key nodes. The data mainly includes 34 key nodes (Vientiane, China-Myanmar oil and gas pipeline, China-Laos Thai-Cambodia railway, Alexandria, Yangon, Kwantan, Kolkata, Warsaw, Karachi, Yekaterinburg, Yekaterinburg and other regions).
WU Hua
Under the background of global warming, the frequency and intensity of drought are increasing. The lack of water resources, food crisis and ecological deterioration (such as desertification) caused by drought disasters directly threaten the national food security and social and economic development. The technical level of drought disaster risk assessment and emergency management needs to be improved. One belt, one road area has one belt, one road area is fragile, agricultural land is concentrated and drought is frequent. Monitoring the drought level and its temporal and spatial changes in large areas by using remote sensing satellites is of great scientific and practical significance for scientifically grasping the drought pattern, regional differentiation characteristics and its impact on agricultural land in the "one belt and one road" area. The percentage of precipitation anomaly reflects the deviation degree between the precipitation of a certain period and the average state of the same period, expressed as a percentage. Based on the daily rainfall data of GPM imerg final run (GPM), the precipitation of corresponding area is calculated. The distribution characteristics of drought of different grades are analyzed by using the grade evaluation index of precipitation anomaly percentage. The spatial resolution is 200m. The data area is 34 key nodes of Pan third pole (Abbas, Astana, Colombo, Gwadar, Mengba, Teheran, Vientiane, etc.).
WU Hua
The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.
DONG Lingxiao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn