Monthly average daytime as well as nighttime data of the Universal Thermal Climate Index (UTCI) for 354 cities in China. The time range of the data is from January 2012 to December 2021, with a temporal resolution of month-by-month. The spatial resolution is 1 km. The data is mainly based on the MYD07 atmosphere profile dataset and MYD11 land surface temperature dataset provided by MODIS, and incorporates the wind speed provided by ERA5 reanalysis data. The urban boundary is demarcated according to the 2018 data provided by Global Urban Boundary-GUB dataset. All the data are resampled to 1 km, in order to maintain the uniform spatial resolution. With the rapid urbanization and global warming, the data are useful for studying the spatiotemporal patterns of urban thermal comfortable and related analysis.
王 晨光 , WANG Chenguang, WANG Chenguang, 占 文凤 ZHAN Wenfeng
This data is the plant diversity and distribution data of chnz016 grid on Qinghai Tibet Plateau, including the Chinese name, Latin name, latitude and longitude, altitude, collection number, number of molecular materials, number of specimens, administrative division, small place, collector, collection time and creator of plants in this grid. The data is obtained from e scientific research website( http://ekk.kib.ac.cn/web/index/#/ )And partially complete the identification. This data has covered the list and specific distribution information of all plants in this flora. This data can be used not only to study the floristic nature of this region, but also to explore the horizontal and vertical gradient pattern of plants in this region.
DENG Tao
This data is the plant diversity and distribution data of chnac006 grid on the Qinghai Tibet Plateau, including the Chinese name, Latin name, latitude and longitude, altitude, collection number, number of molecular materials, number of specimens, administrative division, small place, collector, collection time and creator of plants in this grid. The data is obtained from e scientific research website( http://ekk.kib.ac.cn/web/index/#/ )And partially complete the identification. This data has covered the list and specific distribution information of more than 600 species of plants in more than 200 genera and 91 families in this flora. This data can be used not only to study the floristic nature of this region, but also to explore the horizontal and vertical gradient pattern of plants in this region.
DENG Tao
The dataset contains microbial amplicon sequencing data from a total of 269 ice samples collected from 15 glaciers on the Tibetan Plateau from November 2016 to August 2020, including 24K Glacier (24K), Dongkemadi Glacier (DKMD), Dunde Glacier (DD), Jiemayangzong Glacier (JMYZ), Kuoqionggangri Glacier (KQGR), Laigu Glacier (LG), Palung 4 Glacier (PL4), Qiangtang 1 Glacier (QT), Qiangyong Glacier (QY), Quma Glacier (QM), Tanggula Glacier (TGL), Xiagangjiang Glacier (XGJ), Yala Glacier (YA), Zepugou Glacier (ZPG), ZhufengDongrongbu Glacier (ZF). The sampling areas ranged in latitude and longitude from 28.020°N to 38.100°N and 86.28°E to 95.651°E. The 16s rRNA gene was amplified by polymerase chain reaction (PCR) using 515F/907R (or 515F/806R) primers and sequenced with the Illumina Hiseq2500 sequencing platform to obtain raw data. The selected primer sequences were "515F_GTGYCAGCMGCCGCGGTAA; 907R_CCGTCAATTCMTTTRAGTTT" "515F_GTGCCAGCMGCCGCGG; 806R_ GGACTACHVGGGTWTCTAAT". The uploaded data include: sample number, sample description, sampling time, latitude and longitude coordinates, sample type, sequencing target, sequencing fragment, sequencing primer, sequencing platform, data format and other basic information. The sequencing data are stored in sequence file data format forward *.1.fq.gz and reverse *.2.fq.gz compressed files.
LIU Yongqin
This data is the plant diversity and distribution data of chnyb013 grid on the Qinghai Tibet Plateau, including the Chinese name, Latin name, latitude and longitude, altitude, collection number, number of molecular materials, number of specimens, administrative division, small place, collector, collection time and creator of plants in this grid. The data is obtained from e scientific research website( http://ekk.kib.ac.cn/web/index/#/ )And partially complete the identification. This data has covered a large number of plant catalogues and specific distribution information in this flora. This data can be used not only to study the floristic nature of this region, but also to explore the horizontal and vertical gradient pattern of plants in this region.
DENG Tao
This data is the plant diversity and distribution data of the chnab005 grid on the Qinghai Tibet Plateau, including the Chinese name, Latin name, latitude and longitude, altitude, collection number, number of molecular materials, number of specimens, administrative division, small place, collector, collection time and creator of the plants in this grid. This data is obtained from e-Science website( http://ekk.kib.ac.cn/web/index/#/ )And partially complete the identification. This data has covered the list of plants in this flora and the specific distribution information. This data can be used not only to study the floristic nature of this region, but also to explore the horizontal and vertical gradient pattern of plants in this region. What is different from last year is that the grid with the most scientific research data this year has changed, which may be affected by the epidemic or the environment.
DENG Tao
To fully implement the measures for the administration of the scientific data for the "government budget funding for formation of the scientific data shall, in accordance with the open as normal, not open for exception principle, by the competent department to organize the formulation of scientific data resources directory, the directory should be timely access to the national data sharing and data exchange platform, open to society and relevant departments to share, In the spirit of unimpeded military-civilian sharing channels for scientific data, and in accordance with the relevant requirements of relevant exchange standards and specifications, this code is now established for the second Comprehensive scientific investigation and research project on the Qinghai-Tibet Plateau. The main drafting unit of this code: Institute of Geographic Sciences and Natural Resources Research, CAS. Main draftsman of this specification: project group 9 of the second Comprehensive Scientific investigation and research Mission of qinghai-Tibet Plateau.
YANG Yaping
Log and image are unique and important primary data of field research, and also an important part of scientific data. In order to further standardize the collection, collation, warehousing and exchange of expedition logs and image data of the second Comprehensive scientific investigation and research project on the Qinghai-Tibet Plateau, and ensure the operability, organization and standardization of the warehousing of expedition logs and image data, this technical specification is formulated. This specification provides procedures and methods for the collection and collation of investigation logs and image data, including work preparation, field investigation, data collation and other requirements, in order to better serve the storage of investigation data. This specification applies to the collation and storage of log and image data of field investigations organized by the second Comprehensive scientific investigation and research project on the Qinghai-Tibet Plateau, and other relevant data formed by field investigations can also be carried out by reference to this technical specification.
YANG Yaping
This dataset includes the maximum normalized vegetation index (NDVI) data from 1982 to 2015, the maximum enhanced vegetation index (EVI) data from 2000 to 2020, and the land cover change (LUCC) data from 2001 to 2019 in the China-Mongolia-Russia Economic Corridor (CMREC). Among these, NDVI data was extracted from GIMMS satellite data with a resolution of 8 km; EVI and LUCC data were extracted from MODIS satellite data (MOD13A3 and MCD12C1) with a resolution of 1 km and 5 km, respectively. The dataset filters the outliers or missing values in the original data, which is of higher quality than the source data. Meanwhile, we adopted the maximum value composite (MVC) method to process NDVI and EVI data to obtain the annual maximum NDVI and EVI, which can better reflect the vegetation distribution and change in CMREC over the past several decades. The spatio-temporal changes of vegetation and land use extracted from satellite remote sensing data will provide scientifical guidance for the risk control and prevention of the ecological environment change in CMREC.
ZHANG Xueqin
In order to integrate the pan third pole domestic chicken data, build the "global domestic chicken genome database (chicken2k)", provide basic data for the international research on the origin, domestication and selection of domestic chickens, and provide scientific guidance for the breeding and improvement of new domestic chicken varieties. In 2022, this sub project cooperated with the Animal Branch of the Germplasm Bank of Wild Species, Chinese Academy of Sciences, to apply for the use of genetic samples of domestic animals in Southeast Asia collected and preserved in recent years, and select representative individuals to carry out genetic diversity assessment. This data set contains 224 blood and tissue samples of domestic chickens and Hongyuan chickens from Southeast Asian countries (Laos, Thailand, Myanmar and Vietnam) collected by the Animal Germplasm Resource Bank. This data set contains basic sample information such as sample species, variety, detailed sampling place, sample type, collection time, collector and storage method, which are stored in Excel form.
PENG Minsheng
In order to describe the distribution pattern of genetic diversity of main domesticated animals in the Qinghai Tibet Plateau and its surrounding areas (Pan third pole area), and clarify its related genetic background. In 2020, we extracted the total DNA from 266 global chicken blood, tissue and other DNA tissue samples, built a database and sequenced the whole genome. At the same time, we downloaded the published chicken genome data, and carried out population analysis of 863 chicken genomes, so as to provide basic data for exploring the historical events of domestication, migration and expansion of domestic chickens in the pan third pole region, and further explore the adaptation mechanism of domesticated animals to harsh environments such as drying. Articles related to this data set have been published. All data in this data set can be downloaded online from fastq, BAM, VCF and SNP files.
PENG Minsheng
On the basis of field scientific research, this parameter set integrates the parameters of debris flow disaster chain and landslide disaster chain observed along important roads in Himalayan and Hengduan Mountains. The regional scope covers Nyingchi, Shannan, Bomi, Basu, Shigatse, Ali and other regions of the Tibet Autonomous Region, as well as the East Asia rift valley of the China India channel. The source and mode of data production are processed according to the original data obtained from field scientific investigation. This parameter set is mainly based on the field investigation to determine the location and type of disaster and disaster chain, the damage of major highway projects and other information, and then sorted into tables and shp files. It is hoped that this data can provide help for disaster prevention and reduction of road projects in the Qinghai Tibet Plateau.
DENG Hongyan
The data includes ecological policy documents after 1979, involving laws, regulations, terms and schemes on Ecological Governance and ecological management at the national and local government levels. The data combed the evolution process of the country in ecological and environmental governance, as well as the environmental strategies established in different development periods. The research group collected various documents of ecological policies on the government's official website and local yearbooks every year from 2018 to 2021. In order to ensure the relative integrity and pertinence of the data, this study sorted and selected the policy texts according to the following principles: ① the main sources of policies are the government's official website and its subordinate departments; ② Documents in line with ecological policies; ③ Select laws and regulations, plans, opinions, methods, detailed rules, regulations, announcements, notices, resolutions and other documents reflecting ecological environment policies. Construct the categories of the policy documents studied, that is, determine the perspective of analyzing the policy text, and define the primary and secondary categories, so that the chief coder and sub coder can understand it uniformly; ② Code the policies one by one after preparing the coding table according to the main category, that is, after carefully reading the policy content, if its content meets the analysis dimension required by the category construction table, fill its code into the coding table; ③ The data of this study is based on the official website and field policy research, which can effectively distinguish the contents of categories involved in the policy text. Therefore, the content analysis of this study has a good level of validity The innovation and evolution of policies change the impact of human activities on the environment to a certain extent, and the guidance and impact of ecological policies on environmentally vulnerable areas are more obvious. If we can fully grasp the dynamic change process of ecological policies and understand the evolution law of ecological policies, we can formulate ecological policies conducive to improving the environment, This paper studies the evolution law of Qilian mountain ecological policy issued since 1979 by using the content analysis method, in order to provide a scientific basis for the formulation of Qilian mountain ecological policy
DING Wenguang , XIE Shuntao
In order to describe the distribution pattern of genetic diversity of main domesticated animals in the Qinghai Tibet Plateau and its surrounding areas, clarify their related genetic background, and establish the corresponding genetic resource bank. In 2021, we collected a total of 267 samples of blood, heart, liver, spleen, lung, kidney, muscle, fat, large intestine, small intestine, stomach and testis of large forehead cattle (Dulong cattle) in Yunnan Province. This data set contains basic sample information such as sample species, species, detailed sampling place, gender, sample type, collection time, collector and storage method, as well as individual photos. The solid samples are stored in the wildlife germplasm resource bank and Animal Germplasm Resource Bank in Southwest China.
LI Yan
This data is the land cover data at 30m resolution of Southeast Asia in 2015. The data format of the data is NetCDF, and the variable name is "land cover type". The data was obtained by mosaicing and extracting the From-GLC data. Several land cover types, such as snow and ice that do not exist in Southeast Asia were eliminated.The legend were reintegrated to match the new data. The data provide information of 8 land cover types: cropland, forest, grassland, shrub, wetland, water, city and bare land. The overall accuracy of the data is 71% (Gong et al., 2019). The data can provide the land cover information of Southeast Asia for hydrological models and regional climate models.
LIU Junguo
1) Data content: changes in genetic diversity of 10 amphibians and reptiles on the Qinghai Tibet Plateau in the face of future climate change. 2) Data source and processing method: Based on the bar code data of 10 amphibians and reptiles on the Qinghai Tibet Plateau, combined with SDM, MPTP approach and other software, the genetic diversity and distribution in 2050, 2070 and 2090 in the future are constructed. 3) Data quality description: the data quality is verified, and the data analysis personnel are strictly trained in the laboratory. 4) Results and prospects of data application: it is found that amphibians and reptiles distributed in the north of Qinghai Tibet Plateau need more attention in protection.
SHEN Wenjing
1) Data content: the data are the ancient DNA data generated by studying the cultural layer of Klu lding site in Nyingchi region, Tibetan Plateau, including the hiseqx metagenomics data of 10 ancient DNA samples from 4 layers. It can be used to preliminarily analyze the changes of species composition recorded by ancient DNA in the sediments, and reveal the process of local agricultural development. 2) Data source and processing method: the research group has its ownership. the data were obtained by using pair-end library building and Illumina hiseqx sequencing platform. 3) Data quality: 20.3 MB, Q30 > 85%. 4) Application: The data will be used to explore the potential of the ancient DNA from archaeological sediments in revealing the development of ancient agriculture on the Tibetan Plateau.
YANG Xiaoyan
In order to master the species composition, floristic characteristics and host information of plateau agricultural and animal husbandry elephants and related natural enemy insects such as Coleoptera, Neuroptera and Diptera, establish a DNA bar code rapid identification system of plateau agricultural and animal husbandry natural enemy insects, evaluate the current situation of natural enemy resources, and put forward suggestions for the sustainable utilization of natural enemy insects. The sub project 2019qzkk05010606 carried out the investigation of natural enemy insect resources in key agricultural and pastoral areas, bulk crop related elephants, Coleoptera, Neuroptera and Diptera on the Qinghai Tibet Plateau, the construction of natural enemy insect species diversity database, and the evaluation of the current situation and sustainable utilization of natural enemy resources. During 2020, the Tibet Autonomous Region, the farming pastoral ecotone, the Farming Forestry ecotone, and the hinterland of farming and pastoral areas in Yunnan Province will carry out the investigation of key groups of natural enemy insects such as Coleoptera, Neuroptera and Diptera, collect samples, biological information and ecological environment information, systematically sort out the samples of natural enemy insects according to the standards and norms, and effectively preserve them, Carry out species morphological identification and obtain DNA bar code information, integrate species geographical distribution, host information, ecological pictures and other information, and build a natural enemy species diversity information database; Evaluate the current situation of natural enemy resources and put forward suggestions for sustainable utilization.
LIU Ning
In order to master the species composition, floristic characteristics and host information of plateau agricultural and animal husbandry elephants and related natural enemy insects such as Coleoptera, Neuroptera and Diptera, establish a DNA bar code rapid identification system of plateau agricultural and animal husbandry natural enemy insects, evaluate the current situation of natural enemy resources, and put forward suggestions for the sustainable utilization of natural enemy insects. The sub project 2019qzkk05010601 carried out the investigation of natural enemy insect resources in key agricultural and pastoral areas, bulk crop related elephants, Coleoptera, Neuroptera and Diptera on the Qinghai Tibet Plateau, the construction of natural enemy insect species diversity database, and the evaluation of the current situation and sustainable utilization of natural enemy resources. During 2020, the Tibet Autonomous Region, the farming pastoral ecotone, the Farming Forestry ecotone, and the hinterland of farming and pastoral areas in Yunnan Province will carry out the investigation of key groups of natural enemy insects such as Coleoptera, Neuroptera and Diptera, collect samples, biological information and ecological environment information, systematically sort out the samples of natural enemy insects according to the standards and norms, and effectively preserve them, Carry out species morphological identification and obtain DNA bar code information, integrate species geographical distribution, host information, ecological pictures and other information, and build a natural enemy species diversity information database; Evaluate the current situation of natural enemy resources and put forward suggestions for sustainable utilization.
QIAO Gexia
In order to analyze the animal diversity pattern of the Qinghai Tibet Plateau and establish the corresponding animal specimen database. The sub project 2019qzkk05010113 was concentrated in the West Tianshan Mountain of Xinjiang in 2021. A total of 200 specimens and tissue samples of local wild animals, such as common vole and Apodemus agrarius, were collected. The solid samples include 200 specimen information tables and 500 photos, such as animal individuals, skins and tissues. This data set includes 1 data set specification table, 1 specimen information table and 1 tissue sample information table. The sample information table contains basic sample information such as species, variety, detailed sampling place, sample type, collection time, collector and storage method, which is stored in the form of Excel. Photos, stored in JPG format.
JIANG Xuelong
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn