This data includes the distribution data of soil bacteria in Namco region of the Qinghai Tibet Plateau, which can be used to explore the seasonal impact of fencing and grazing on soil microorganisms in Namco region. The sample was collected from May to September 2015, and the soil samples were stored in ice bags and transported back to the Ecological Laboratory of Beijing Institute of Qinghai Tibet Plateau Research; This data is the result of amplification sequencing, using MoBio Powersoil ™ Soil DNA was extracted with DNA isolation kit, and the primers were 515F (5 '- GTGCCAAGCGCCGGTAA-3') and 806R (5'GGACTACNVGGGTWTCTAAT-3 '). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and then the similarity between sequences is calculated, and the sequences with a similarity of more than 97% are clustered into an OTU. The Greengenes reference library is used for sequence alignment to remove the sequence that only appears once in the database. The soil moisture content and soil temperature were measured by a soil hygrometer, and the soil pH was measured by a pH meter (Sartorius PB-10, Germany). The soil nitrate nitrogen (NO3 −) and ammonium nitrogen (NH4+) concentrations were extracted with 2 M KCl (soil/solution, 1:5), and analyzed with a Smartchem200 discrete automatic analyzer. This data set is of great significance to the study of soil microbial diversity in arid and semi-arid grasslands.
KONG Weidong
Data on soil bacterial diversity of grassland in Qinghai Tibet Plateau. The samples were collected from July to August 2017, including 120 samples of alpine meadow, typical grassland and desert grassland. The soil surface samples were collected and stored in ice bags, and then transported back to the ecological laboratory of the Beijing Qinghai Tibet Plateau Research Institute. The soil DNA was extracted by MO BIO PowerSoil DNA kit. The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGGTAA-3') and 806R (5 ´ GGACTACNVGGGTWTCTAAT-3 ´). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and the sequence classification is based on the Silva128 database. Sequences with a similarity of more than 97% are clustered into an operation classification unit (OTU). This data systematically compares the bacterial diversity of soil microorganisms in the Qinghai Tibet Plateau transect, which is of great significance to the study of the distribution of microorganisms in the Qinghai Tibet Plateau.
KONG Weidong
This data set includes two infrared cameras and environmental parameter data sets of three terrestrial vertebrates deployed in Qilian Mountain reserve. The equipment is deployed near Sidalong in Qilian Mountain reserve, with a time span of (2020.8-2021.10). Due to equipment maintenance and insufficient illumination, some data are discontinuous, but the data of the two equipment can complement each other and reconstruct all the information of observation points in Qilian Mountain reserve from August 2020 to October 2021. One of the two devices is equipped with an infrared camera, which collects 4994 photos, which can be matched with the above sensor photos, or the ecological factor information before and after taking photos. 1. Wild animals and temperature, humidity, light, pressure and network signal strength information in Qilian Mountain reserve. The acquisition interval is once every half an hour 2. Data source: "development of terrestrial vertebrate monitoring equipment", 2016yfc0500104, completed by: Institute of zoology, Chinese Academy of Sciences, raw data, unprocessed 3. The sensor data acquisition interval is every half an hour. The temperature accuracy is plus or minus 0.1 degrees and the humidity accuracy is plus or minus 0.5%. The photo data is divided into trigger and timing. The trigger data is generally triggered by wild animals in the field of vision of the infrared camera; the timing photo data is dynamically adjusted according to the battery power, and the acquisition interval is between 1-12 hours. 4. This data can be used to record the ambient temperature in the reserve. Combined with the infrared camera data, it can be used to analyze the activity rhythm of wild animals, coexistence analysis and distribution limiting factors.
QIAO Huijie
This vegetation water content data set is derived from the ground synchronous observation in the Luanhe River Basin soil moisture remote sensing experiment, including 55 sampled plots.The vegetation types involved in these sampled plots include grass, corn, potatoes, naked oats and carrots. The data measurement time is from September 13, 2018 to September 26, 2018.
ZHENG Xingming, JIANG Tao
Grassland actual net primary production (NPPa) was calculated by CASA model. CASA model was calculated with the combination of satellite-observed NDVI and climate (e.g. temperature, precipitation and radiation) as the driving factors, and other factors, such as land-use change and human harvest from plant material, were reflected by the changes of NDVI. CASA NPP was determined by two variables, absorbed photosynthetically active radiation’ (APAR) and the light-use efficiency (LUE). Grassland potential net primary production (NPPp) was calculated by TEM model. TEM is one of process-based ecosystem model, which was driven by spatially referenced information on vegetation type, climate, elevation, soils, and water availability to calculate the monthly carbon and nitrogen fluxes and pool sizes of terrestrial ecosystems. TEM can be only applied in mature and undisturbed ecosystem without take the effects of land use into consideration due to it was used to make equilibrium predications. Grassland potential aboveground biomass (AGBp) was estimated by random forest (RF) algorithm, using 345 AGB observation data in fenced grasslands and their corresponding climate data, soil data, and topographical data.
NIU Ben, ZHANG Xianzhou
The content of this data set is the measurements of body weight and body size (body height, body length, chest circumference, tube circumference) of 11 representative yak populations in Qinghai pastoral area at 2018. All the metadata comes from the work of body weight monitoring of yaks in Qinghai pastoral area at 2018, by the Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Academy of Animal Husbandry and Veterinary Sciences. The data set is named by “Monitoring Data Set of Body Weights of Traditional Grazing Yaks in Qinghai Pastoral Area (2018)”, consisting of 11 worksheets. The names and contents of worksheets are as follows: 1. Haiyan-Halejing (167 yaks in halejing Mongolian Town, Haiyan County, Haibei Tibetan Autonomous Prefecture); 2. Qilian-Mole (69 yaks in Mole Town, Qilian County, Haibei Tibetan Autonomous Prefecture); 3. Qilian-Yeniugou (42 yaks in Yeniugou Town, Qilian County, Haibei Tibetan Autonomous Prefecture); 4. Qilian-Yanglong (104 yaks in Yanglong Town, Qilian County, Haibei Tibetan Autonomous Prefecture); 5. Qilian-Ebao (28 yaks in Ebao Town, Qilian County, Haibei Tibetan Autonomous Prefecture); 6. Tianjun-Xinyuan (38 yaks in Xinyuan Town, Tianjun County, Haixi Mongolian and Tibetan Autonomous Prefecture); 7. Tianjun-Longmen (100 yaks in Longmen Town, Tianjun County, Haixi Mongolian and Tibetan Autonomous Prefecture); 8. Gande-Ganlong (36 yaks in Ganglong Town, Gande County, Guoluo Tibetan Autonomous Prefecture); 9. Guinan-Taxiu (70 yaks in Taxiu Town, Guinan County, Hainan Tibetan Autonomous Prefecture); 10. Henan-Kesheng (73 yaks in Kesheng Town, Henan Mongolian Autonomous Country, Huangnan Tibetan Autonomous Prefecture); 11. Ledu-Dala (50 yaks in Dala Town, Ledu District, Haidong City). This data set comprehensively evaluates the growth performance of yaks grazing in alpine meadow under the current ecological environment through the measurement of weight and body size data in the representative areas of Qinghai pastoral area. The data set can be compared with the growth characteristics of representative populations of Qinghai yaks measured in 1981 and 2008 recorded in 1983 and 2013, and the degradation index of growth performance of yaks grazing in Qinghai pastoral area can be obtained, which is helpful to assess the impact of ecological environment changes on the growth and production performance of grazing livestock.
JIA Gongxue, YANG Qien, Tianwei XU
The data set includes the spatial distribution of grass yield in the Qinghai-Tibetan Plateau in 1980, 1990, 2000, 2010, and 2017. The gross primary productivity (GPP) of grassland in the Qinghai-Tibetan Plateau was simulated based on the ecological hydrological dynamic model VIP (vegetation interface process) with independent intellectual property of Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences. The net primary productivity (NPP) was estimated by empirical coefficient, and converted it into dry matter, and then the hay yield was estimated by root-shoot ratio. The spatial resolution is 1km. The data set will provide the basis for grassland resource management, development, utilization and the formulation of the strategy of "grass for livestock".
MO Xingguo
This dataset subsumes sustainable livestock carrying capacity in 2000, 2010, and 2018 and overgrazing rate in 1980, 1990, 2000, 2010, and 2017 at county level over Qinghai Tibet Plateau. Based on the NPP data simulated by VIP (vehicle interface process), an eco hydrological model with independent intellectual property of the institute of geographic sciences and nature resources research(IGSNRR), Chinese academy of Sciences(CAS), the grass yield data (1km resolution) is obtained. Grass yield is then calculated at county level, and corresponding sustainable livestock carring capacity is calculated according to the sustainable livestock capacity calculation standard of China(NY / T 635-2015). Overgrazing rate is calculated based on actual livestock carring capacity at county level.The dataset will provide reference for grassland restoration, management and utilization strategies.
MO Xingguo
According to the characteristics of the Qinghai Tibet Plateau and the principles of scientificity, systematization, integrity, operability, measurability, conciseness and independence, the human activity intensity evaluation index system suitable for the Qinghai Tibet Plateau has been constructed, which mainly includes the main human activities such as agricultural and animal husbandry activities, industrial and mining development, urbanization development, tourism activities, major ecological engineering construction, pollutant discharge, etc, On the basis of remote sensing data, ground observation data, meteorological data and social statistical yearbook data, the positive and negative effects of human activities are quantitatively evaluated by AHP, and the intensity and change characteristics of human activities are comprehensively evaluated. The data can not only help to enhance the understanding of the role of human activities in the vegetation change in the sensitive areas of global change, but also provide theoretical basis for the sustainable development of social economy in the Qinghai Tibet Plateau, and provide scientific basis for protecting the ecological environment of the plateau and building a national ecological security barrier.
ZHANG Haiyan, XIN Liangjie, FAN Jiangwen, YUAN Xiu
Geographical distribution of major ecological protection and construction projects on the Tibetan plateau. There are four main projects, i.e. forest protection and construction project, grassland protection and construction project, desertification control project, soil erosion comprehensive control project. Processing method: classified summary, and the county as a unit of the regional distribution.
Da Wei
1) Initial data of community characteristics and main plant biological characteristics of the grass-animal equilibrium stage of the test grassland in 1983; 2) Livestock management data of 4-5 grazing grasslands; 3) Observation data of diversity, productivity and functional group of different grazing grassland communities; 4) Observation data on the height, coverage, biomass, and flower morphology, tillering, and leaf characteristics of main plants in different grazing gradient grasslands 5) Observation data of soil nutrients and litter in different grazing grasslands.
ZHAO Chengzhang
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn