This data set is the human activity data in the key areas of Qilian Mountain in 2020. Based on the data of mining, illegal house renovation, new roads, land leveling and ecological restoration in the key areas of Qilian Mountain, the Gaofen-1, Gaofen-2 and ZY3 high-resolution remote sensing images to compare the changes before and after statistical analysis. in the key areas of Qilian Mountain, the changes of land types are investigated and verified block by block; in the areas with suspicious maps, re-interpretation and verification; in the areas with unreflecting images, field verification is carried out to collect relevant data, check and correct the location. At the same time, it further checks the attribute information of mining, illegal house renovation, new roads, land leveling and ecological restoration in the key areas of Qilian Mountain in 2020, and unifies the input and editing of the patches and their attributes, forming the data set of 2m spatial resolution human activities in the key areas of Qilian Mountain in 2020, realizing the current situation and timeliness of ecological management in the key areas of Qilian Mountain, and providing data support for the monitoring of human activities in the key areas of Qilian Mountain in 2020.
QI Yuan, ZHANG Jinlong, YUAN Jing, ZHOU Shengming, WANG Hongwei
Gross domestic product (GDP) is a monetary measure of the market value of all the final goods and services produced in a period of time, which has been used to determine the economic performance of a whole country or region. According to the collected the published global GDP data of 2015, a downscaling model, named support vector machine regression kriging was established for predicting 100-m GDP in thirty-four key nodes along the Belt and Road. The remote sensed night light data, land cover, vegetation and terrain indices were employed as ancillary variables in downscaling process. To solve the problem of missing data existing in the ancillary datasets, we will apply kriging and function interpolation methods to fill gaps. The aggregation and resampling were used to obtain 1-km and 500-m all ancillary variables, as well as 100-m terrain indices including elevation, slope and aspect. The adopted downscaling model contains trend and residual predictions. The support vector machine regression is used to model the relationship among GDP and its ancillary variables for obtaining GDP trends at fine scale based on scale invariant of the relationship. And then, the kriging interpolation is used to estimate GDP residuals at fine scale. In the downscaling process, the mentioned downscaling model was firstly employed in 1-km and 500-m data for obtaining 500-m GDP predictions; and it was again used in 500-m and 100-m data for achieving 100-m GDP predictions. The 100-m GDP predictions in constant 2011 international US dollars would provide high spatial resolution data for risk assessments.
GE Yong, LING Feng
The fraction snow cover (FSC) is the ratio of the snow cover area SCA to the pixel space. The data set covers the Arctic region (35 ° to 90 ° north latitude). Using Google Earth engine platform, the initial data is the global surface reflectance product with a resolution of 1000m with mod09ga, and the data preparation time is from February 24, 2000 to November 18, 2019. The methods are as follows: in the training sample area, the reference data set of FSC is prepared by using Landsat 8 surface reflectance data and snomap algorithm, and the data set is taken as the true value of FSC in the training sample area, so as to establish the linear regression model between FSC in the training sample area and NDSI based on MODIS surface reflectance products. Using this model, MODIS global surface reflectance product is used as input to prepare snow area ratio time series data in the Arctic region. The data set can provide quantitative information of snow distribution for regional climate simulation and hydrological model.
MA Yuan, LI Hongyi
The sand drift potential data sets of Central Asia in 2017 is in tif format. It covers five countries in Central Asia, including Uzbekistan, Tajikistan, Kyrgyzstan, Kazakhstan and Turkmenistan. The sand drift potential is absolutely drift potential, that is, the sum of the flux in all directions, regardless of the direction of the potential. The data was obtained by GLDAS global three-hour assimilation data extraction calculation. The temporal resolution is month, the spatial resolution is 0.25°, and the time range is 2017. This data set can be used as an important reference data for sand storm disaster assessment.
GAO Xin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn