1) Data content: species list and distribution data of sand lizard and hemp lizard in the Qaidam Basin, including class, order, family Chinese name, family Latin name, genus Chinese name, genus Latin name, species Latin name, species Chinese name, country, province, city, county, town and township, etc; 2) Data source and processing method: Based on the field investigation of amphibians and reptiles in the arid desert area of the Qaidam Basin from 2007 to 2021, the species composition and distribution range of toad-headed agamas and racerunners in this area are recorded; 3) Data quality description: the investigation, collection and identification personnel of samples are professionals. The collection information of samples is checked to ensure the quality of distribution data; 4) Data application achievements and prospects: comprehensive analysis of species diversity and distribution data of toad-headed agamas and racerunners in the Qaidam Basin can provide important data for biodiversity cataloguing in northwest desert region and arid Central Asia, and provide scientific basis for assessing biodiversity situation and formulating conservation strategies.
GUO Xianguang
This data set includes two infrared cameras and environmental parameter data sets of three terrestrial vertebrates deployed in Qilian Mountain reserve. The equipment is deployed near Sidalong in Qilian Mountain reserve, with a time span of (2020.8-2021.10). Due to equipment maintenance and insufficient illumination, some data are discontinuous, but the data of the two equipment can complement each other and reconstruct all the information of observation points in Qilian Mountain reserve from August 2020 to October 2021. One of the two devices is equipped with an infrared camera, which collects 4994 photos, which can be matched with the above sensor photos, or the ecological factor information before and after taking photos. 1. Wild animals and temperature, humidity, light, pressure and network signal strength information in Qilian Mountain reserve. The acquisition interval is once every half an hour 2. Data source: "development of terrestrial vertebrate monitoring equipment", 2016yfc0500104, completed by: Institute of zoology, Chinese Academy of Sciences, raw data, unprocessed 3. The sensor data acquisition interval is every half an hour. The temperature accuracy is plus or minus 0.1 degrees and the humidity accuracy is plus or minus 0.5%. The photo data is divided into trigger and timing. The trigger data is generally triggered by wild animals in the field of vision of the infrared camera; the timing photo data is dynamically adjusted according to the battery power, and the acquisition interval is between 1-12 hours. 4. This data can be used to record the ambient temperature in the reserve. Combined with the infrared camera data, it can be used to analyze the activity rhythm of wild animals, coexistence analysis and distribution limiting factors.
QIAO Huijie
The data includes: zooplankton species list; zooplankton density; microscopy; high-throughput sequencing; complete data; constructing an original data set for lakes on the Qinghai-Tibet Plateau. Zooplankton is an indispensable link in lake water ecological investigation, and it is a link between the system The location of the food web is an important carrier for the material circulation and energy flow of the food web. The systematic investigation and study of the composition and biodiversity of the zooplankton in the lakes on the Qinghai-Tibet Plateau is particularly important for understanding the stability and resilience of the lake ecosystem on the Qinghai-Tibet Plateau. In addition, Zooplankton are very sensitive to environmental changes, and changes in their structure and functional groups can indicate the intensity and magnitude of environmental pressure.
LI Yun
The data of farmland distribution on the Qinghai-Tibet Plateau were extracted on the basis of the land use dataset in China (2015). The dataset is mainly based on landsat 8 remote sensing images, which are generated by manual visual interpretation. The land use types mainly include the cultivated land, which is divided into two categories, including paddy land (1) and dry land (2). The spatial resolution of the data is 30m, and the time is 2015. The projection coordinate system is D_Krasovsky_1940_Albers. And the central meridian was 105°E and the two standard latitudes of the projection system were 25°N and 47°N, respectively. The data are stored in TIFF format, named “farmland distribution”, and the data volume is 4.39GB. The data were saved in compressed file format, named “30 m grid data of farmland distribution in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015”. The data can be opened by ArcGIS, QGIS, ENVI, and ERDAS software, which can provide reference for farmland ecosystem management on the QTP.
LIU Shiliang, SUN Yongxiu, LI Mingqi
The Grassland Degradation Assessment Dataset in agricultural and pastoral areas of the Qinghai-Tibet Plateau (QTP) is a data set based on the 500m Global Land Degradation Assessment Data (2015), which is evaluated according to the degree of grassland degradation or improvement. In this dataset, the grassland degradation of the QTP was divided into two evaluation systems. At the first level, the grassland degradation assessment was divided into 3 types, including no change type, improvement type and degradation type. At the second level, the grassland degradation assessment on the QTP was divided into 9 types, among which the type with no change was class 1, represented by 0. There were 4 types of improvement: slight improvement (3), relatively significant improvement (6), significant improvement (9) and extremely significant improvement (12). The degradation types can be divided into 4 categories: slight degradation (-3), relatively obvious degradation (-6), obvious degradation (-9) and extremely obvious degradation (-12). This dataset covers all grassland areas on the QTP with a spatial resolution of 500m and a time of 2015. The projection coordinate system is D_Krasovsky_1940_Albers. The data are stored in TIFF format, named “grassdegrad”, and the data volume is 94.76 MB. The data were saved in compressed file format, named “500 m grid data of grassland degradation assessment in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015”. The file volume is 2.54 MB. The data can be opened by ArcGIS, QGIS, ENVI, and ERDAS software, which can provide reference for grassland ecosystem management and restoration on the QTP.
LIU Shiliang, SUN Yongxiu, LIU Yixuan
1) Data content: the main ecological environment data retrieved from remote sensing in Pan third polar region, including PM2.5 concentration, forest coverage, Evi, land cover, and CO2; 2) data source and processing method: PM2.5 is from the atmospheric composition analysis group web site at Dalhousie University, and the forest coverage data is from MODIS Vegetation continuum Fields (VCF), CO2 data from ODIAC fossil fuel emission dataset, EVI data from MODIS vehicle index products, and land cover data from ESA CCI land cover. 65 pan third pole countries and regions are extracted, and others are not processed; 3) data quality description: the data time series from 2000 to 2015 is good; 4) data application achievements and prospects: it can be used for the analysis of ecological environment change.
LI Guangdong
1) Data content: species list and distribution data of Phrynocephalus and Eremais in Tarim Basin, including class, order, family, genus, species, and detailed distribution information including country, province, city and county; 2) Data source and processing method: Based on the field survey of amphibians and reptiles in Tarim Basin from 2008 to 2020, and recording the species composition and distribution range of Phrynocephalus and Eremias in this area; 3) Data quality description: the investigation, collection and identification of samples are all conducted by professionals, and the collection of samples information are checked to ensure the quality of distribution data; 4) Data application results and prospects: Through comprehensive analysis of the dataset, the list of species diversity and distribution can provide important data for biodiversity cataloguing in arid central Asia, and provide scientific basis for assessing biodiversity pattern and formulating conservation strategies.
GUO Xianguang
From April to June 2019, we used both live traps and camera traps to collect mammal diversity and distributions along the elevational gradients at the Yarlung Zangbo Grand Canyon National Nature Reserve. We set 64 trap lines for small mammals inventory, with a total of 11456 live trap nights. We collected 1061 individuals and 2394 tissue samples of small mammals during the field sampling. We also retrived images of 60 camera traps placed between October 2018 and April 2019. We obtained 4638 pictures of wild animals and 654 captures of anthopogenic activities. The camera traps were reset in the same locations after renew batteries and memory cards. Small mammal data consist of richness, abundance, traits, environmental gradients etc, and could be used to model relationship between environmental gradients and traits concatenated by richness matrix. Camera trap data could inventory endangered species in the region, and provide information to identify biodiversity hotspots and conservation priorities.
LI Xueyou
1) data content: distribution map of Amphipoda in the Tibetan Plateau; 2) data source and processing method: based on the list of Amphipoda in Tibetan and its basic database of distribution, including longitude and latitude, altitude, and the ArcView software has been used to make the distribution map of Amphipoda in the Tibetan Plateau; 3) data quality description: sample collection, longitude and latitude, altitude information are checked to ensure the quality of distribution data, all analysts have received strict training in the laboratory; 4) data application achievements and prospects: comprehensively analyze the distribution data, species diversity and genetic diversity of Amphipoda in Tibetan Plateau, discuss the impact of climate change on Amphipoda diversity and the response of Amphipoda to environmental change from the perspective of evolution and genetics, and provide scientific basis for biodiversity assessment and ecological protection in the Tibetan Plateau; 5) legend: brown circles for samples from Tian Shan, pink circles for samples at north side of the Yarlung Zangbo River with diversification age of 2-4 Ma, greeen triangles for samples at south side of the Yarlung Zangbo River with diversification age of 4-6 Ma, yellow circles for samples from Himalayas with diversification age around 3 Ma, orange square for samples from Hengduan Mt. with diversificaiton age of 5-7 Ma, blue circles for samples from east of the Tibetan Plateau.
HOU Zhonge
The birds along the Zhamo Highway in Medog and Bome counties are investigated by mist net method and point count method. According to the 400-meter elevation span, elevation transects were set up in the survey area. Four elevation transects are set up in the north slope from Gangcun to Galong Temple in Bome County, from low to high, and nine elevation transects are set up in the south slope from Jiefang Bridge to Galongla in Medog County. So that we can make a breakthrough understanding the formation and maintenance mechanism of bird diversity in this region. The data of bird diversity and distribution will be used to further explore the key scientific issues such as the impact of climate change on bird diversity and adaptation strategies, and the response and protection strategies of bird species diversity under the global climate change.
DONG Feng
From October to November 2018, we used both live traps and camera traps to collect mammal diversity and distributions along the elevational gradients at the Yarlung Zangbo Grand Canyon National Nature Reserve. Small mammal diversity and abundance were collected at 5 elevational belts range between 2600m and 3500m above sea level, with a total of 2776 live trap nights. We collected 439 individuals and 878 tissue samples of small mammals during the first field sampling. We also located 60 camera traps along elevational gradient range between 1050m and 3960m asl, and plan to collect the camera trapping data in May 2019. Small mammal data consist of richness, abundance, traits, environmental gradients etc, and could be used to model relationship between environmental gradients and traits concatenated by richness matrix. Camera trap data could inventory endangered species in the region, and provide information to identify biodiversity hotspots and conservation priorities.
LI Xueyou
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, based on which the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were forecast. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations of the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering of the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, on which basis the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations for the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
By applying supply-demand balance analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, and the results were used to assess the vulnerability of the water resources system in the basin. The IPAT equation was used to establish a future water resource demand scenario, which involved setting various variables, such as the future population growth rate, economic growth rate, and water consumption per unit GDP. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydro-meteorological Institute, a model of the variation trends of the basin under a changing climate was designed. The glacial melting scenario was used as the model input to construct the runoff scenario in response to climate change. According to the national regulations of the water resource allocation in the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the grain production-related land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources in scenarios of climate change, glacial melting and population growth was analysed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities in the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
Shule River Basin is one of the three inland river basins in Hexi corridor. In recent years, with the obvious change of climate and the aggravation of human activities, the shortage of water resources and the problem of ecological environment in Shule River Basin have become increasingly prominent. It is of great significance to study the runoff change of Shule River Basin in the future climate situation for making rational water resources planning and ecological environment protection. The Shule River basin boundary is cut from "China's 1:100000 desert sand data set". Taking the 2000 TM image as the data source, it interprets, extracts, revises, and uses remote sensing and geographic information system technology to combine with the 1:100000 scale mapping requirements to carry out thematic mapping of desert, sand and gravel gobi. Data attribute table: Area (area), perimeter (perimeter), ash_ (sequence code), class (desert code), ash_id (desert code). The desert code is as follows: mobile sand 2341010, semi mobile sand 2341020, semi fixed sand 2341030, Gobi 2342000, salt alkali land 2343000. Collect and sort out the basic, meteorological, topographical and geomorphic data of Shule River Basin, and provide data support for the management of Shule River Basin.
The interaction mechanism project between major road projects and the environment in western mountainous areas belongs to the major research plan of "Environment and Ecological Science in Western China" of the National Natural Science Foundation. The person in charge is Cui Peng researcher of Chengdu Mountain Disaster and Environment Research Institute, Ministry of Water Resources, Chinese Academy of Sciences. The project runs from January 2003 to December 2005. Data collected for this project: Engineering and Environmental Centrifugal Model Test Data (word Document): Consists of six groups of centrifugal model test data, namely: Test 1. Centrifugal Model Test of Soil Cutting High Slope (6 Groups) Test 2. Centrifugal Model Experiment of Backpressure for Slope Cutting and Filling (4 Groups) Test 3. Centrifugal Model Experimental Study on Anti-slide Piles and Pile-slab Walls (10 Groups) Test 4. Centrifugal Model Tests for Different Construction Timing of Slope (5 Groups) Test 5. Migration Effect Centrifugal Model Test (11 Groups) Test 6. Centrifugal Model Test of Water Effect on Temporary Slope (8 Groups) The purpose, theoretical basis, test design, test results and other information of each test are introduced in detail.
CUI Peng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn