The dataset is the remote sensing image data ofGF-1 satellite in the Qinghai-Tibet engineering corridor obtained by China High Resolution Earth Observation Center. After the fusion processing of multispectral and panchromatic bands, the image data with a spatial resolution of 2 m is obtained. In the process of obtaining ground vegetation information, the classification technology of combining object-oriented computer automatic interpretation and manual interpretation is adopted, The object-oriented classification technology is to collect adjacent pixels as objects to identify the spectral elements of interest, make full use of high-resolution panchromatic and multispectral data space, texture and spectral information to segment and classify, and output high-precision classification results or vectors. In actual operation, the image is automatically extracted by eCognition software. The main processes are image segmentation, information extraction and accuracy evaluation. After verification with the field survey, the overall extraction accuracy is more than 90%.
NIU Fujun
China cloud-removal snow albedo product data set is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
ChinaSA is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions. To assess the retrieval quality of ChinaSA, the accuracy of the snow albedo product was verified using observations from in-situ meteorological stations and the sample observation validation method, and compared with the accuracy of four commonly used albedo products (GLASS, GlobAlbedo, MCD43A3 and SAD). The validation results show that ChinaSA outperforms the other products in all validations, with a root mean square error (RMSE) of less than 0.12, and can achieve a RMSE of 0.021 in forest areas.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
Surface soil moisture (SSM) is a crucial parameter for understanding the hydrological process of our earth surface. Passive microwave (PM) technique has long been the primary choice for estimating SSM at satellite remote sensing scales, while on the other hand, the coarse resolution (usually >~10 km) of PM observations hampers its applications at finer scales. Although quantitative studies have been proposed for downscaling satellite PM-based SSM, very few products have been available to public that meet the qualification of 1-km resolution and daily revisit cycles under all-weather conditions. In this study, therefore, we have developed one such SSM product in China with all these characteristics. The product was generated through downscaling of AMSR-E and AMSR-2 based SSM at 36-km, covering all on-orbit time of the two radiometers during 2003-2019. MODIS optical reflectance data and daily thermal infrared land surface temperature (LST) that have been gap-filled for cloudy conditions were the primary data inputs of the downscaling model, in order to achieve the “all-weather” quality for the SSM downscaling outcome. Daily images from this developed SSM product have achieved quasi-complete coverage over the country during April-September. For other months, the national coverage percentage of the developed product is also greatly improved against the original daily PM observations. We evaluated the product against in situ soil moisture measurements from over 2000 professional meteorological and soil moisture observation stations, and found the accuracy of the product is stable for all weathers from clear sky to cloudy conditions, with station averages of the unbiased RMSE ranging from 0.053 vol to 0.056 vol. Moreover, the evaluation results also show that the developed product distinctly outperforms the widely known SMAP-Sentinel (Active-Passive microwave) combined SSM product at 1-km resolution. This indicates potential important benefits that can be brought by our developed product, on improvement of futural investigations related to hydrological processes, agricultural industry, water resource and environment management.
SONG Peilin, ZHANG Yongqiang
This dataset contains the glacier outlines in Qilian Mountain Area in 2019. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2019 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2019, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2019. The dataset was produced by utilizing the optimized wavelet-coupled-RF downscaling model (RF-OWCM) to downscale the “AMSR-E and AMSR2 TB-based SMAP Time-Expanded Daily 0.25°×0.25° Land Surface Soil Moisture Dataset in Qilian Mountain Area (SMsmapTE, V1)”. The auxiliary datasets participating in the downscaling model include GLASS Albedo/LAI/FVC, Thermal and Reanalysis Integrating Medium-resolution Spatial-seamless LST – Tibetan Plateau (TRIMS LST-TP) by Ji Zhou and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
This dataset includes data of glacier elevation changes in 2000‒2013 and 2000‒2017 at high spatial resolution (5 m). The specific areas are Namco area in the west section of Nyainqentangula Mountains (WNM) and Kangri Karpo area in the east section of Nyainqentangula Mountains (ENM). Glacier boundary refers to Randolph Glacier Inventory Version 4.0 (RGI 4.0). The glacier elevation changes were calculated from the DEM data generated by ZiYuan-3 Three-Line-Array (ZY-3 TLA) stereo images in 2013 and 2017 and SRTM DEM data in 2000, respectively. The data in the WNM include three periods, i.e., 2000‒2013, 2013‒2017 and 2000‒2017. The data in the ENM include one period, i.e., 2000‒2017. The spatial resolution of the dataset is 5 meters, the unit is m a^−1, the data format is GeoTIFF, the data type is floating-point, and the projection mode is UTM 46N for the west segment and UTM 47N for the east segment. The glacier elevation change can be transformed into the glacier mass balance (unit: w.e. a^−1) of corresponding temporal intervals by multiplying the average density of the glacier. This dataset can provide the details of the spatial patterns of glacier elevation changes to support modeling studies of glacier mass balance in this region.
REN Shaoting, JIA Li
The Qinghai-Tibetan Plateau (QTP), the largest high-altitude and low-latitude permafrost zone in the world, has experienced rapid permafrost degradation in recent decades, and one of the most remarkable resulting characteristics is the formation of thermokarst lakes. Such lakes have attracted significant attention because of their ability to regulate carbon cycle, water, and energy fluxes. However, the distribution of thermokarst lakes in this area remains largely unknown, hindering our understanding of the response of permafrost and its carbon feedback to climate change.Based on more than 200 sentinel-2A images and combined with ArcGIS, NDWI and Google Earth Engine platform, this data set extracted the boundary of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau through GEE automatic extraction and manual visual interpretation.In 2018, there were 121,758 thermokarst lakes in the permafrost area of the Qinghai-Tibet Plateau, covering an area of 0.0004-0.5km², with a total area of 1,730.34km² respectively.The cataloging data set of Thermokarst Lakes provides basic data for water resources evaluation, permafrost degradation evaluation and thermal karst study on the Qinghai-Tibet Plateau.
CHEN Xu, MU Cuicui, JIA Lin, LI Zhilong, FAN Chengyan, MU Mei, PENG Xiaoqing, WU Xiaodong
This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2018. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “AMSR-E and AMSR2 TB-based SMAP Time-Expanded Daily 0.25°×0.25° Land Surface Soil Moisture Dataset in Qilian Mountain Area (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
The dataset include ground-based passive microwave brightness temperature, multi-angle brightness temperature, ten-minute 4-component radiation and snow temperature, daily snow pit data and hourly meteorological data observed at Altay base station(lon:88.07、lat: 44.73)from November 27, 2015 to March 26, 2016. Daily snow pit parameters include: snow stratification, stratification thickness, density, particle size, temperature. These data are stored in five NetCDF files: TBdata. nc, TBdata-multiangle. nc, ten-minute 4 component radiation and snow temperature. nc, hourly meteorological and soil data. nc and daily snow pit data.nc. TBdata. nc is brightness temperature at 3 channels for both polarizations automatically collected by a six-channel dual polarized microwave radiometer RPG-6CH-DP. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. TBdata-multiangle.nc is 7 groups of multi-angle brightness temperatures at 3 channels for both polarizations. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. The ten-minute 4 component radiation and snow temperature.nc contains 4 component radiation and layered snow temperatures. The contents include Year, month, day, hour, minute, SR_DOWN, SR_UP, LR_DOWN, LR_UP, T_Sensor, ST_0cm, ST_5cm, ST_15cm, ST_25cm, ST_35cm, ST_45cm, ST_55cm. The hourly meteorological and soil data.nc contains hourly weather data and layered soil data. The contents include Year, month, day, hour, Tair, Wair, Pair, Win, SM_10cm, SM_20cm, Tsoil_5cm, Tsoil_10cm, Tsoil_15 cm, Tsoil_20cm. The daily snow pit data.nc. is manual snow pit data. The observation time was 8:00-10:100 am local time. The contents include Year, month, day, snow depth, thickness_layer1, thickness_layer2, thickness_layer3, thickness_layer4, thickness_layer5, thickness_layer6, Long_layer1, Short_layer1, Long_layer2, Short_layer2, Long_layer3, Short_layer3, Long_layer 4, Short_layer4, Long_layer5, Short_layer5, Long_layer6, Short_layer 6, Stube, Snow shovel_0-10, Snow shovel _10-20, Snow shovel _20-30, Snow shovel _30-40, Snow shovel _40-50, Snow fork_5, Snow fork _10, Snow fork _15, Snow fork_20, Snow fork_25, Snow fork_30, Snow fork_35, Snow fork_40, Snow fork_45, Snow fork_50, shape1, shape2, shape3, shape4, shape5,
DAI Liyun
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
SHER Muhammad
The long-term evolution of lakes on the Tibetan Plateau (TP) could be observed from Landsat series of satellite data since the 1970s. However, the seasonal cycles of lakes on the TP have received little attention due to high cloud contamination of the commonly-used optical images. In this study, for the first time, the seasonal cycle of lakes on the TP were detected using Sentinel-1 Synthetic Aperture Radar (SAR) data with a high repeat cycle. A total of approximately 6000 Level-1 scenes were obtained that covered all large lakes (> 50 km2) in the study area. The images were extracted from stripmap (SM) and interferometric wide swath (IW) modes that had a pixel spacing of 40 m in the range and azimuth directions. The lake boundaries extracted from Sentinel-1 data using the algorithm developed in this study were in good agreement with in-situ measurements of lake shoreline, lake outlines delineated from the corresponding Landsat images in 2015 and lake levels for Qinghai Lake. Upon analysis, it was found that the seasonal cycles of lakes exhibited drastically different patterns across the TP. For example, large size lakes (> 100 km2) reached their peaks in August−September while lakes with areas of 50−100 km2 reached their peaks in early June−July. The peaks of seasonal cycles for endorheic lakes were more pronounced than those for exorheic lakes with flat peaks, and glacier-fed lakes with additional supplies of water exhibited delayed peaks in their seasonal cycles relative to those of non-glacier-fed lakes. Large-scale atmospheric circulation systems, such as the westerlies, Indian summer monsoon, transition in between, and East Asian summer monsoon, were also found to affect the seasonal cycles of lakes. The results of this study suggest that Sentinel-1 SAR data are a powerful tool that can be used to fill gaps in intra-annual lake observations.
ZHANG Yu, ZHANG Guoqing
Sentine-1 SAR data were used to monitor the permafrost of Biuniugou in Heihe River Basin of Qinghai-Tibet Plateau. Based on the Sentine-1 SAR image of Bison Valley from 2014 to 2018, the active layer thickness in the study area was estimated by using the small baseline set time series InSAR (DSs-SBAS) frozen soil deformation monitoring method based on distributed radar target, combined with SAR backscattering coefficient, MODIS surface temperature and Stefan model. The results show that the thickness of active layer is between 0.8 m and 6.6 m, with an average of about 3.3 M. It is of great significance to carry out large-scale and high-resolution monitoring.
JIANG Liming
Global warming and human activities have led to the degradation of permafrost and the collapse of permafrost, which have seriously affected the construction of permafrost projects and the ecological environment. Based on high-resolution satellite images, the permafrost of oboling in Heihe River Basin of Qinghai Tibet Plateau is taken as the research area, and the object-oriented classification technology of machine learning is used to extract the thermal collapse information in the research area. The results show that from 2009 to 2019, the number of thermal collapse increased from 12 to 16, and the total area increased from 14718.9 square meters to 28579.5 square meters, nearly twice. The combination of high spatial resolution remote sensing and object-oriented classification method has a broad application prospect in the monitoring of thermal thawing and collapse of frozen soil.
JIANG Liming
This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2017. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “AMSR-E and AMSR2 TB-based SMAP Time-Expanded Daily 0.25°×0.25° Land Surface Soil Moisture Dataset in Qilian Mountain Area (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
This dataset contains monthly 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2005, 2010 and 2015. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “AMSR-E and AMSR2 TB-based SMAP Time-Expanded Daily 0.25°×0.25° Land Surface Soil Moisture Dataset in Qilian Mountain Area (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
This dataset contains SMAP time-expanded daily 0.25°×0.25° land surface soil moisture products in Qilian Mountain Area from June 19, 2002 to Dec 31, 2021. The dataset was produced based on Random Forest method by utilizing AMSR-E and AMSR2 brightness temperature from 6.925 GHz V/H, 10.65 GHz V/H and 36.5 GHz V channels along with some auxiliary datasets. The auxiliary datasets participating in the RF training include IGBP land cover type, GTOPO30 DEM and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
This dataset contains SMAP time-expanded monthly 0.25°×0.25° land surface soil moisture products in Qilian Mountain Area of 1980, 1985, 1990, 1995 and 2000. The dataset was produced based on Random Forest method by utilizing SMMR, SSM/I and SSMIS brightness temperature from 19 GHz V/H and 37 GHz V channels along with some auxiliary datasets. The auxiliary datasets participating in the RF training include IGBP land cover type, GTOPO30 DEM and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn