The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.
WANG Shijin
Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
YANG Wei, LI Zhongqin, WANG Ninglian, QIN Xiang
1. Glacial lake data sets (1960s−2020) This data set contains glacial lake data for the 1960s, 2016, 2017, 2018, 2019, and 2020, mapped from Korona KH-4, Sentinel-2, and Sentinel-1 imagery. 2. Potential Outburst Flood Hazard level of Bhutanese glacial lakes This data contains the Potential Outburst Flood Hazard level of Bhutanese glacial lakes with an area greater than 0.05 km2 (n=278). The value for each hazard assessment criteria is also provided in the data attributes.
RINZIN Sonam, ZHANG Guoqing
Surface soil moisture (SSM) is a crucial parameter for understanding the hydrological process of our earth surface. Passive microwave (PM) technique has long been the primary choice for estimating SSM at satellite remote sensing scales, while on the other hand, the coarse resolution (usually >~10 km) of PM observations hampers its applications at finer scales. Although quantitative studies have been proposed for downscaling satellite PM-based SSM, very few products have been available to public that meet the qualification of 1-km resolution and daily revisit cycles under all-weather conditions. In this study, therefore, we have developed one such SSM product in China with all these characteristics. The product was generated through downscaling of AMSR-E and AMSR-2 based SSM at 36-km, covering all on-orbit time of the two radiometers during 2003-2019. MODIS optical reflectance data and daily thermal infrared land surface temperature (LST) that have been gap-filled for cloudy conditions were the primary data inputs of the downscaling model, in order to achieve the “all-weather” quality for the SSM downscaling outcome. Daily images from this developed SSM product have achieved quasi-complete coverage over the country during April-September. For other months, the national coverage percentage of the developed product is also greatly improved against the original daily PM observations. We evaluated the product against in situ soil moisture measurements from over 2000 professional meteorological and soil moisture observation stations, and found the accuracy of the product is stable for all weathers from clear sky to cloudy conditions, with station averages of the unbiased RMSE ranging from 0.053 vol to 0.056 vol. Moreover, the evaluation results also show that the developed product distinctly outperforms the widely known SMAP-Sentinel (Active-Passive microwave) combined SSM product at 1-km resolution. This indicates potential important benefits that can be brought by our developed product, on improvement of futural investigations related to hydrological processes, agricultural industry, water resource and environment management.
SONG Peilin, ZHANG Yongqiang
Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
YANG Wei, LI Zhongqin, WANG Ninglian, QIN Xiang
This dataset provides the in-situ lake water parameters of 124 closed lakes with a total lake area of 24,570 km2, occupying 53% of the total lake area of the TP.These in-situ water quality parameters include water temperature, salinity, pH,chlorophyll-a concentration, blue-green algae (BGA) concentration, turbidity, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), and water clarity of Secchi Depth (SD).
ZHU Liping
This dataset contains the physicochemical properties and water environment indicators of typical alpine wetlands in the Selincuo and Lhasa River basins of the Tibetan Plateau. Wetland water samples were obtained through field sampling, and data on the physicochemical indicators of the water bodies were obtained through chemical analysis in the laboratory. Some indicators were measured in the field using instruments. The data analysis method meets the requirements of relevant national standards and the results are reliable. The data can be used as background data for the water environment of wetlands on the Tibetan Plateau, to assess the ecological and environmental quality of wetlands, and to study the impact of climate change on alpine wetlands.
XIONG Xiong
In this study, an algorithm that combines MODIS Terra and Aqua (500 m) and the Interactive Multisensor Snow and Ice Mapping System (IMS) (4 km) is presented to provide a daily cloud-free snow-cover product (500 m), namely Terra-Aqua-IMS (TAI). The overall accuracy of the new TAI is 92.3% as compared with ground stations in all-sky conditions; this value is significantly higher than the 63.1% of the blended MODIS Terra-Aqua product and the 54.6% and 49% of the original MODIS Terra and Aqua products, respectively. Without the IMS, the daily combination of MODIS Terra-Aqua over the Tibetan Plateau (TP) can only remove limited cloud contamination: 37.3% of the annual mean cloud coverage compared with the 46.6% (MODIS Terra) and 55.1% (MODIS Aqua). The resulting annual mean snow cover over the TP from the daily TAI data is 19.1%, which is similar to the 20.6% obtained from the 8-day MODIS Terra product (MOD10A2) but much larger than the 8.1% from the daily blended MODIS Terra-Aqua product due to the cloud blockage.
ZHANG Guoqing
The Qinghai-Tibetan Plateau (QTP), the largest high-altitude and low-latitude permafrost zone in the world, has experienced rapid permafrost degradation in recent decades, and one of the most remarkable resulting characteristics is the formation of thermokarst lakes. Such lakes have attracted significant attention because of their ability to regulate carbon cycle, water, and energy fluxes. However, the distribution of thermokarst lakes in this area remains largely unknown, hindering our understanding of the response of permafrost and its carbon feedback to climate change.Based on more than 200 sentinel-2A images and combined with ArcGIS, NDWI and Google Earth Engine platform, this data set extracted the boundary of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau through GEE automatic extraction and manual visual interpretation.In 2018, there were 121,758 thermokarst lakes in the permafrost area of the Qinghai-Tibet Plateau, covering an area of 0.0004-0.5km², with a total area of 1,730.34km² respectively.The cataloging data set of Thermokarst Lakes provides basic data for water resources evaluation, permafrost degradation evaluation and thermal karst study on the Qinghai-Tibet Plateau.
CHEN Xu, MU Cuicui, JIA Lin, LI Zhilong, FAN Chengyan, MU Mei, PENG Xiaoqing, WU Xiaodong
We comprehensively estimated water volume changes for 1132 lakes larger than 1 km2. Overall, the water mass stored in the lakes increased by 169.7±15.1 Gt (3.9±0.4 Gt yr-1) between 1976 and 2019, mainly in the Inner-TP (157.6±11.6 or 3.7±0.3 Gt yr-1). A substantial increase in mass occurred between 1995 and 2019 (214.9±12.7 Gt or 9.0±0.5 Gt yr-1), following a period of decrease (-45.2±8.2 Gt or -2.4±0.4 Gt yr-1) prior to 1995. A slowdown in the rate of water mass increase occurred between 2010 and 2015 (23.1±6.5 Gt or 4.6±1.3 Gt yr-1), followed again by a high value between 2015 and 2019 (65.7±6.7 Gt or 16.4±1.7 Gt yr-1). The increased lake-water mass occurred predominately in glacier-fed lakes (127.1±14.3 Gt) in contrast to non-glacier-fed lakes (42.6±4.9 Gt), and in endorheic lakes (161.9±14.0 Gt) against exorheic lakes (7.8±5.8 Gt) over 1976−2019.
ZHANG Guoqing
1) These data main included the GPR-surveyed ice thickness of six typical various-sized glaciers in 2016-2018; the GlabTop2-modeled ice thickness of the entire UIB sub-basins, discharge data of the hydrological stations, and related raw & derived data. 2) Data sources and processing methods: We compared the plots and profiles of GPR-surveyed ice bed elevation with the GlabTop2-simulated results and selected the optimal parametric scheme, then simulated the ice thickness of the whole UIB basin and assessed its hydrological effect. These processed results were stored as tables and tif format, 3) Data quality description: The simulated ice thickness has a spatial resolution of 30 m, and has been verified by the GPR-surveyed ice thickness for the MD values were less than 10 m. The maximum error of the GPR-measured data was 230.2 ± 5.4 m, within the quoted glacier error at ± 5%. 4) Synthesizing knowledge of the ice thickness and ice reserves provides critical information for water resources management and regional glacial scientific research, it is also essential for several other fields of glaciology, including hydrological effect, regional climate modeling, and assessment of glacier hazards.
ZHANG Yinsheng
Based on Landsat data (kh-9 data in 1976 as auxiliary data), glacial lake data of nearly 40 years (1970s-2018) in the western Nyainqentanglha range were obtained by manual digitization and visual interpretation. The variation characteristics of glacial lake over 0.0036 square kilometers in terms of type, size, elevation and watershed were analyzed in detail. The results show that, between 1976 and 2018, the number of glacial lakes increased by 56% from 192 to 299 and their total area increased by 35% from 6.75 ± 0.13 square kilometers to 9.12 ± 0.13 square kilometers ; the type of glacial lake is changing obviously; the smaller glacial lake is changing faster; the expansion of glacial lake is developing to higher altitude.
LUO Wei, ZHANG Guoqing
The data includes the runoff components of the main stream and four tributaries in the source area of the Yellow River. In 2014-2016, spring, summer and winter, based on the measurement of radon and tritium isotopic contents of river water samples from several permafrost regions in the source area of the Yellow River, and according to the mass conservation model and isotope balance model of river water flow, the runoff component analysis of river flow was carried out, and the proportion of groundwater supply and underground ice melt water in river runoff was preliminarily divided. The quality of the data calculated by the model is good, and the relative error is less than 20%. The data can provide help for the parameter calibration of future hydrological model and the simulation of hydrological runoff process.
WAN Chengwei
This data includes the daily average water temperature data at different depths of Nam Co Lake in Tibet which is obtained through field monitoring. The data is continuously recorded by deploying the water quality multi-parameter sonde and temperature thermistors in the water with the resolution of 10 minutes and 2 hours, respectively, and the daily average water temperature is calculated based on the original observed data. The instruments and methods used are very mature and data processing is strictly controlled to ensure the authenticity and reliability of the data; the data has been used in the basic research of physical limnology such as the study of water thermal stratification, the study of lake-air heat balance, etc., and to validate the lake water temperature data derived from remote sensing and different lake models studies. The data can be used in physical limnology, hydrology, lake-air interaction, remote sensing data assimilation verification and lake model research.
WANG Junbo
In April 2014 and may 2016, 21 Lakes (7 non thermal lakes and 14 thermal lakes) were collected in the source area of the Yellow River (along the Yellow River) respectively. The abundance of hydrogen and oxygen allogens was measured by Delta V advantage dual inlet / hdevice system in inno tech Alberta laboratory in Victoria, Canada. The isotope abundance was expressed in the form of δ (‰) (relative to the average seawater abundance in Vienna) )Test error: δ 18O: 0.1 ‰, δ D: 1 ‰. The data also includes Lake area and lake basin area extracted from Landsat 2017 image data in Google Earth engine.
WAN Chengwei
The long-term evolution of lakes on the Tibetan Plateau (TP) could be observed from Landsat series of satellite data since the 1970s. However, the seasonal cycles of lakes on the TP have received little attention due to high cloud contamination of the commonly-used optical images. In this study, for the first time, the seasonal cycle of lakes on the TP were detected using Sentinel-1 Synthetic Aperture Radar (SAR) data with a high repeat cycle. A total of approximately 6000 Level-1 scenes were obtained that covered all large lakes (> 50 km2) in the study area. The images were extracted from stripmap (SM) and interferometric wide swath (IW) modes that had a pixel spacing of 40 m in the range and azimuth directions. The lake boundaries extracted from Sentinel-1 data using the algorithm developed in this study were in good agreement with in-situ measurements of lake shoreline, lake outlines delineated from the corresponding Landsat images in 2015 and lake levels for Qinghai Lake. Upon analysis, it was found that the seasonal cycles of lakes exhibited drastically different patterns across the TP. For example, large size lakes (> 100 km2) reached their peaks in August−September while lakes with areas of 50−100 km2 reached their peaks in early June−July. The peaks of seasonal cycles for endorheic lakes were more pronounced than those for exorheic lakes with flat peaks, and glacier-fed lakes with additional supplies of water exhibited delayed peaks in their seasonal cycles relative to those of non-glacier-fed lakes. Large-scale atmospheric circulation systems, such as the westerlies, Indian summer monsoon, transition in between, and East Asian summer monsoon, were also found to affect the seasonal cycles of lakes. The results of this study suggest that Sentinel-1 SAR data are a powerful tool that can be used to fill gaps in intra-annual lake observations.
ZHANG Yu, ZHANG Guoqing
Lakes on the Tibetan Plateau (TP) are an indicator and sentinel of climatic changes. We extended lake area changes on the TP from 2010 to 2021, and provided a long and dense lake observations between the 1970s and 2021. We found that the number of lakes, with area larger than 1 k㎡ , has increased to ~1400 in 2021 from ~1000 in the 1970s. The total area of these lakes decreased between the 1970s and ~1995, and then showed a robust increase, with the exception of a slight decrease in 2015. This expansion of the lakes on the highest plateau in the world is a response to a hydrological cycle intensified by recent climate changes.
ZHANG Guoqing
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).
WANG Lei
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
ZHANG Yinsheng
This is the flow data set observed in 2010 by the glacier hydrological station in the upper reaches of the Rongbu River on Mount Everest, Tibet. The measured section position is 28º22'03''N, 86º56'53' 'E, with an altitude of 4290 meters. It is measured by an LS20B propeller-type current meter by the one-point method. All the data were observed and collected in strict accordance with the Equipment Operating Specifications.
ZHANG Guoshuai
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn