We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
As an important part of the global carbon pool, Arctic permafrost is one of the most sensitive regions to global climate change. The rate of warming in the Arctic is twice the global average, causing rapid changes in Arctic permafrost. The NDVI change data set of different types of permafrost regions in the Northern Hemisphere from 1982 to 2015 has a temporal resolution of every five years, covers the entire Arctic Rim countries, and a spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, GIS method and ecological method are used to quantify the regulation and service function of permafrost in the northern hemisphere to the ecosystem, and all the data are subject to quality control.
WANG Shijin
This dataset contains the glacier outlines in Qilian Mountain Area in 2015. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2018 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2018, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2019. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2019 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2019, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2021. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2021 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2021, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
Hourly spatially complete land surface temperature (LST) products have a wide range of applications in many fields such as freeze-thaw state monitoring and summer high temperature heat wave monitoring. Although the LST retrieved from thermal infrared (TIR) remote sensing observations has high accuracy, it is spatially incomplete due to the influence of cloud, which heavily limits the application of LST. LST simulated by land surface models (LSM) is with high temporal resolution and spatiotemporal continuity, while the spatial resolution is relatively coarse and the accuracy is poor. Therefore, fusing the remote sensing retrieved LST and the model simulated LST is an effective way to obtain seamless hourly LST. The authors proposed a fusion method to generate 0.02° hourly seamless LST over East Asia and produced the corresponding data set. This dataset is the 0.02 ° hourly seamless LST dataset over East Asia (2016-2021). Firstly, the iTES algorithm is employed to retrieve the Himawari-8/AHI LST. Secondly, the CLDAS LST is corrected to eliminate its system deviation. Finally, the multi-scale Kalman filter is employed to fuse Himawari-8/AHI LST and the bias-corrected CLDAS LST to generate 0.02 ° hourly seamless LST. The in situ verification results show that the root mean square error (RMSE) of the seamless LST is about 3k. The temporal resolution and spatial resolution of this dataset are 1 hour and 0.02°, respectively. The time period is 2016-2021 over (0-60°N, 80°E-140°E).
CHENG Jie, DONG Shengyue, SHI Jiancheng
Using the analytic hierarchy process, this study selects eight assessment factors and assesses the comprehensive quality of eight glacier inventories of the TPR by grading. By merging products of the eight glacier inventories in terms of best-quality assessment units, A new glacier inventory product of best comprehensive quality was derived for the entire TPR. The new product greatly promotes the quality of a single glacier inventory for the entire TPR. The database provides: (1) glacier information inherited from the original inventories including longitude, latitude, area, elevation, slope, aspect, acquisition time of the remote-sensing data; (2) information of the assessment including normalized index values of the eight assessment factors, integrated index values and grades of scenes for all of the eight inventories, which is recorded in terms of individual glaciers. It would meet the needs not only for the potential users who need to know the best glacier inventory of comprehensive quality of a region, but also for those who prefer to get information on a single quality or factor (e.g. seasonal snowcover) of a given glacier inventory.
HE Xia , ZHOU Shiqiao
This dataset consists of four files including (1) Lake ice thickness of 16 large lakes measured by satellite altimeters for 1992-2019 (Altimetric LIT for 16 large lakes.xlsx); (2) Daily lake ice thickness and lake surface snow depth of 1,313 lakes with an area > 50 km2 in the Northern Hemisphere modeled by a one-dimensional remote sensing lake ice model for 2003-2018 (in NetCDF format); (3) Future lake ice thickness and surface snow depth for 2071-2099 modeled by the lake ice model with a modified ice growth module (table S1.xlsx); (4) A lookup table containing lake IDs, names, locations, and areas. This daily lake ice and snow thickness dataset could provide a benchmark for the estimation of global lake ice and snow mass, thereby improving our understanding of the ecological and economical significance of freshwater ice as well as its response to climate change.
LI Xingdong, LONG Di, HUANG Qi, ZHAO Fanyu
Funded by the National Key R&D Program "Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", "Multi-scale Observation and Data Product Development of Key Cryosphere Parameters", Changes and impacts of glaciers, snow cover and permafrost and how to deal with them (Grant NO.2019QZKK0201), and Pan-tertiary environmental change and the construction of green silk road (Grant NO.XDA20000000), the research group of Zhang Yinsheng, Institute of Qinghai-Tibet Plateau, Chinese Academy of Sciences developed downscaled snow water equivalent products in the Qinghai-Tibet Plateau. The sub-pixel space-time decomposition algorithm was used to downscale the 0.05° daily snow depth data set (2000-2018) over the Qinghai-Tibet Plateau. And the snow depth depletion model was used to supplement the estimation of the snow depth value in the shallow snow area that cannot be detected by passive microwave remote sensing. Finally, based on the snow density grid data, the snow depth data is converted into snow water equivalent data.
YAN Dajiang, ZHANG Yinsheng
This data is a high-resolution soil freeze/thaw (F/T) dataset in the Qinghai Tibet Engineering Corridor (QTEC) produced by fusing sentinel-1 SAR data, AMSR-2 microwave radiometer data, and MODIS LST products. Based on the newly proposed algorithm, this product provides the detection results of soil F/T state with a spatial resolution of 100 m on a monthly scale. Both meteorological stations and soil temperature stations were used for results evaluation. Based on the ground surface temperature data of four meteorological stations provided by the national meteorological network, the overall accuracy of soil F/T detection products achieved 84.63% and 77.09% for ascending and descending orbits, respectively. Based on the in-situ measured 5 cm soil temperature data near Naqu, the average overall accuracy of ascending and descending orbits are 78.58% and 76.66%. This high spatial resolution F/T product makes up traditional coarse resolution soil F/T products and provides the possibility of high-resolution soil F/T monitoring in the QTEC.
ZHOU Xin , LIU Xiuguo , ZHOU Junxiong , ZHANG Zhengjia , CHEN Qihao , XIE Qinghua
1. Glacial lake data sets (1960s−2020) This data set contains glacial lake data for the 1960s, 2016, 2017, 2018, 2019, and 2020, mapped from Korona KH-4, Sentinel-2, and Sentinel-1 imagery. 2. Potential Outburst Flood Hazard level of Bhutanese glacial lakes This data contains the Potential Outburst Flood Hazard level of Bhutanese glacial lakes with an area greater than 0.05 km2 (n=278). The value for each hazard assessment criteria is also provided in the data attributes.
RINZIN Sonam, ZHANG Guoqing
Surface melting is the primary reason that affects the mass balance of Greenland ice sheet. At the same time, ice and snow have high albedo, and ice sheet surface melting will cause the difference of radiation energy budget, and then affects the energy exchange between sea-land-air. The high-resolution ice sheet surface melting product provides important information support for the study of Greenland ice sheet surface melting and its response to global climate change. This dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Greenland ice sheet surface melt daily product for 1985, 2000, 2015 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Greenland ice sheet, and the data set is stored as *.nc.
WEI Siyi,
Snow, ice, and glaciers have the highest albedo of any part of Earth's surface. The increase in melting of the polar ice sheet results in a rapid and sequential decrease in albedo and subsequently influences the global energy balance. The hydrological system derived from surface melt and basal meltwater will affect the dynamic stability of ice sheet and therefore mass balance. The dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Antarctic ice sheet surface melt daily product for 1985-1986, 2000-2001, 2015-2016 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. It better reflects the melting gradient of mountainous area, groundline area and ice shelf over time, DSSMIS has a higher accuracy. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Antarctic ice sheet, and the data set is stored as *.nc.
WEI Siyi,
Surface soil moisture (SSM) is a crucial parameter for understanding the hydrological process of our earth surface. Passive microwave (PM) technique has long been the primary choice for estimating SSM at satellite remote sensing scales, while on the other hand, the coarse resolution (usually >~10 km) of PM observations hampers its applications at finer scales. Although quantitative studies have been proposed for downscaling satellite PM-based SSM, very few products have been available to public that meet the qualification of 1-km resolution and daily revisit cycles under all-weather conditions. In this study, therefore, we have developed one such SSM product in China with all these characteristics. The product was generated through downscaling of AMSR-E and AMSR-2 based SSM at 36-km, covering all on-orbit time of the two radiometers during 2003-2019. MODIS optical reflectance data and daily thermal infrared land surface temperature (LST) that have been gap-filled for cloudy conditions were the primary data inputs of the downscaling model, in order to achieve the “all-weather” quality for the SSM downscaling outcome. Daily images from this developed SSM product have achieved quasi-complete coverage over the country during April-September. For other months, the national coverage percentage of the developed product is also greatly improved against the original daily PM observations. We evaluated the product against in situ soil moisture measurements from over 2000 professional meteorological and soil moisture observation stations, and found the accuracy of the product is stable for all weathers from clear sky to cloudy conditions, with station averages of the unbiased RMSE ranging from 0.053 vol to 0.056 vol. Moreover, the evaluation results also show that the developed product distinctly outperforms the widely known SMAP-Sentinel (Active-Passive microwave) combined SSM product at 1-km resolution. This indicates potential important benefits that can be brought by our developed product, on improvement of futural investigations related to hydrological processes, agricultural industry, water resource and environment management.
SONG Peilin, ZHANG Yongqiang
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
This biophysical permafrost zonation map was produced using a rule-based GIS model that integrated a new permafrost extent, climate conditions, vegetation structure, soil and topographic conditions, as well as a yedoma map. Different from the previous maps, permafrost in this map is classified into five types: climate-driven, climate-driven/ecosystem-modified, climate-driven/ecosystem protected, ecosystem-driven, and ecosystem-protected. Excluding glaciers and lakes, the areas of these five types in the Northern Hemisphere are 3.66×106 km2, 8.06×106 km2, 0.62×106 km2, 5.79×106 km2, and 1.63×106 km2, respectively. 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai-Tibet Plateau.
RAN Youhua, M. Torre Jorgenson, LI Xin, JIN Huijun, Wu Tonghua, Li Ren, CHENG Guodong
Kilometer-level spatially complete (seamless) land surface temperature products have a wide range of applications needs in climate change and other fields. Satellite retrieved LST has high reliability. Integrating the LST retrieved from thermal infrared and microwave remote sensing observation is an effective way to obtain the SLT with certain accuracy and spatial integrity. Based on this guiding ideology, the author developed a framework for retrieving 1km and seamless LST over China landmass, and generated the LST data set accordingly (2002-2020) Firstly, a look-up table based empirical retrieval algorithm is developed for retrieving microwave LST from AMSR-E/AMSR2 observations. Then, AMSR-E/AMSR2 LST is downscaled by using geographic weighted regression to obtain 1km LST. Finally, the multi-scale Kalman filter is used to fuse AMSR-E/AMSR2 LST and MODIS LST to generate a 1km seamless LST data set. The ground valuation results show that the root mean square error (RMSE) of the 1km seamless LST is about 3K. In addition, the spatial distribution of the 1km seamless LST is consistent with MODIS LST and CLDAS LST.
CHENG Jie, DONG Shengyue, SHI Jiancheng
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn