The microbial reprocessing products of polar ice and snow in typical years collected the analysis results of bacteria sampled from glaciers, Glacial Snow and ice in the polar regions and the Qinghai Tibet Plateau from 2010 to 2018. Through sorting, summarizing and summarizing, the post-processing data products of soil microorganisms in the three pole region are obtained, and the data format is excel, which is convenient for users to view. Among them, the prokaryotes of Glacial Snow and ice in the polar regions and Qinghai Tibet Plateau are the sequences of bacterial 16S ribosomal RNA gene collected by teacher Liu Yongqin's experimental group from NCBI database from 2010 to 2018. The collected sequences calculate the similarity between sequences by using dotour software. Sequences with a similarity of more than 97% are clustered into an OTU, and OTU representative sequences are defined. OTU representative sequences were compared with RDP database through "Classifier" software, and were identified to the first level when the reliability was greater than >80%; The glaciers on the Qinghai Tibet Plateau were collected from 2010 to 2018, including the bacterial 16S ribosomal RNA gene sequence of seven glaciers on the Qinghai Tibet Plateau (East Rongbu glacier on Mount Everest, Tianshan No. 1 glacier, Guliya glacier, Laohugou glacier, muzitang glacier, July 1st glacier and yuzhufeng glacier) isolated by teacher Liu Yongqin's experimental group, Malan glacier isolated by teacher Xiang Shurong and ruogangri glacier isolated by teacher Zhang Xinfang. Glacier samples were collected and brought back to the ecological Laboratory of the Institute of Qinghai Tibet Plateau Research in Beijing and the Lanzhou cryosphere National Laboratory. After coating the plate, it was cultured at different temperatures (4-25 ℃) for 20-90 days, and a single colony was picked for purification. The isolated bacteria extracted DNA, amplified 16S ribosomal RNA gene fragments with 27f/1492r primers, and sequenced with Sanger method. 16S ribosomal RNA gene sequence was compared with RDP database through "Classifier" software, and was identified to the first level when the reliability was greater than >80%.
YE Aizhong
River ice is the main component of the cryosphere, and the freezing of rivers in the polar region has a significant impact on the Arctic shipping and transportation industry. With the construction of "ice silk road" between China and Russia, monitoring the change of river ice in Erqis river basin can provide theoretical basis for river navigation. The sparse distribution of hydrological stations in the Arctic limits the study of river ice. The limited available data of hydrological stations show that the trend of river ice rupture is ahead of schedule, but the specific climate mechanism driving this trend is very complex. Therefore, optical data with high temporal resolution (such as MODIS products) are suitable for monitoring river ice phenology and mapping river ice cover range, which is helpful to understand the process of river ice rupture. Based on MODIS and passive microwave data, a method of monitoring river ice in Erqis River Basin by using different remote sensing data is realized in this study, in order to analyze the phenological parameters of river ice such as the time of river closure, the time of river closure, the speed of river opening, the speed of river closure and the duration of freezing period. At the same time, it is helpful to understand the response of river ice breaking process to Arctic climate warming.
Liang Wenshan, QIU Yubao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn