The Antarctic McMurdo Dry Valleys ice velocity product is based on the Antarctic Ice Sheet Velocity and Mapping Project (AIV) data product, which is post-processed with advanced algorithms and numerical tools. The product is mapped using Sentinel-1/2/Landsat data and provides uniform, high-resolution (60m) ice velocity results for McMurdo Dry Valleys, covering the period from 2015 to 2020.
JIANG Liming JIANG Liming JIANG Liming
Pine Island Glacier, Swett Glacier, etc. are distributed in the basins of the Antarctic Ice Sheet 21 and 22, which is one of the areas with the most severe melting in the Southwest Antarctica. This dataset first uses Cryosat-2 data (August 2010 to October 2018) to establish a plane equation in each regular grid, taking into account terrain items, seasonal fluctuations, backscattering coefficients, wave front width, lifting rails and other factors, and calculates the elevation change of ice cover surface in the grid through least square regression. In addition, we used ICESat-2 data (October 2018 to December 2020) to calculate the surface elevation change during the two periods by obtaining the elevation difference at the intersection of satellite lifting orbits in each regular grid. The spatial resolution of surface elevation change data in two periods is 5km × 5km, the file format is GeoTIFF, the projection coordinate is polar stereo projection (EPSG 3031), and it is named by the name of the satellite altimetry data used. The data can be opened using ArcMap, QGIS and other software. The results show that the average elevation change rate of the region from 2010 to 2018 is -0.34 ± 0.08m/yr, which belongs to the area with severe melting. The annual average elevation change rate from October 2018 to November 2020 is -0.38 ± 0.06m/yr, which is in an intensified state compared with CryoSat-2 calculation results.
YANG Bojin , HUANG Huabing , LIANG Shuang , LI Xinwu
Snow cover is an important component of the cryosphere and an indispensable variable in the scientific research of global change and Earth system. The distribution range and phenological information of snow cover are important indicators to measure the variation characteristics of snow cover, and also important parameters for snow melting runoff simulation in the hydrological model of cold regions. The High Mountain Asia is the source of many international rivers, and also the hot spot of global climate change research; The ecological and environmental problems caused by the change of ice and snow in the region, such as the reduction of water resources, the increase of extreme weather events, and the frequent occurrence of disasters, have attracted extensive attention from all countries. Therefore, it is very important for climate change research, water resources management, disaster early warning and prevention to accurately obtain long-term snow distribution and snow phenology data in High Mountain Asia . The daily cloudless MODIS normalized snow cover index (NDSI) product (2000-2021500 m) in the High Mountain Asia is based on the MODIS daily snow cover product (including Terra Morning Star data product MOD10A1 and Aqua Afternoon Star data product MYD10A1, C6 versions), and is processed by the same day afternoon star data fusion and cubic spline interpolation cloud removal algorithm; Among them, when there was only Morningstar data product MOD10A1 from 2000 to 2002, the cubic spline interpolation algorithm was directly used for cloud removal. The snow cover phenological data set for hydrological years 2002-2020 is prepared based on cloudless MODIS NDSI products in hydrological years, including three parameters: snow onset date (SOD), snow end date (SED) and snow duration days (SDD). This data set has reliable accuracy.
TANG Zhiguang , DENG Gang
Glacier surface albedo is a key parameter in the process of glacier mass and energy balance. The data include annual mean glacier surface albedo and annual minimum glacier surface albedo for each year of the 2000-2020 ablation period (June-August) in the High Mountain Asia. Based on the MODIS 500m resolution daily snow albedo products (including MOD10A1 and MYD10A1), firstly, mean-synthesis was applied to the morning star data MOD10A1 and afternoon star data MYD10A1, followed by interpolation and null-filling using mean-filtering for data within a ±2 day window, and finally based on the minimum and mean methods to obtain the annual mean albedo and annual minimum albedo for glaciers in High Mountain Asia were obtained based on the minimum and mean methods. Compared to the original data, the accuracy and coverage of the data are greatly improved. It can provide ice surface albedo input data for studying the relationship between glacier albedo and matss balance and for glacier models.
XIAO Yao
We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
The fractional snow cover (FSC) is the ratio of snow cover area (SCA) to unit pixel area. The data set is made by bv-blrm snow area proportional linear regression empirical model; The source data used are mod09ga 500m global daily surface reflectance products and mod09a1 500m 8-day synthetic global surface reflectance products; The production platform uses Google Earth engine; The data range is global, the data preparation time is from 2000 to 2021, the spatial resolution is 500 meters, and the temporal resolution is year by year. This set of data can provide quantitative information of snow cover distribution for regional climate simulation and hydrological models.
MA Yuan
The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
Hourly spatially complete land surface temperature (LST) products have a wide range of applications in many fields such as freeze-thaw state monitoring and summer high temperature heat wave monitoring. Although the LST retrieved from thermal infrared (TIR) remote sensing observations has high accuracy, it is spatially incomplete due to the influence of cloud, which heavily limits the application of LST. LST simulated by land surface models (LSM) is with high temporal resolution and spatiotemporal continuity, while the spatial resolution is relatively coarse and the accuracy is poor. Therefore, fusing the remote sensing retrieved LST and the model simulated LST is an effective way to obtain seamless hourly LST. The authors proposed a fusion method to generate 0.02° hourly seamless LST over East Asia and produced the corresponding data set. This dataset is the 0.02 ° hourly seamless LST dataset over East Asia (2016-2021). Firstly, the iTES algorithm is employed to retrieve the Himawari-8/AHI LST. Secondly, the CLDAS LST is corrected to eliminate its system deviation. Finally, the multi-scale Kalman filter is employed to fuse Himawari-8/AHI LST and the bias-corrected CLDAS LST to generate 0.02 ° hourly seamless LST. The in situ verification results show that the root mean square error (RMSE) of the seamless LST is about 3k. The temporal resolution and spatial resolution of this dataset are 1 hour and 0.02°, respectively. The time period is 2016-2021 over (0-60°N, 80°E-140°E).
CHENG Jie, DONG Shengyue, SHI Jiancheng
China cloud-removal snow albedo product data set is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
ChinaSA is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions. To assess the retrieval quality of ChinaSA, the accuracy of the snow albedo product was verified using observations from in-situ meteorological stations and the sample observation validation method, and compared with the accuracy of four commonly used albedo products (GLASS, GlobAlbedo, MCD43A3 and SAD). The validation results show that ChinaSA outperforms the other products in all validations, with a root mean square error (RMSE) of less than 0.12, and can achieve a RMSE of 0.021 in forest areas.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
This dataset consists of four files including (1) Lake ice thickness of 16 large lakes measured by satellite altimeters for 1992-2019 (Altimetric LIT for 16 large lakes.xlsx); (2) Daily lake ice thickness and lake surface snow depth of 1,313 lakes with an area > 50 km2 in the Northern Hemisphere modeled by a one-dimensional remote sensing lake ice model for 2003-2018 (in NetCDF format); (3) Future lake ice thickness and surface snow depth for 2071-2099 modeled by the lake ice model with a modified ice growth module (table S1.xlsx); (4) A lookup table containing lake IDs, names, locations, and areas. This daily lake ice and snow thickness dataset could provide a benchmark for the estimation of global lake ice and snow mass, thereby improving our understanding of the ecological and economical significance of freshwater ice as well as its response to climate change.
LI Xingdong, LONG Di, HUANG Qi, ZHAO Fanyu
Funded by the National Key R&D Program "Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", "Multi-scale Observation and Data Product Development of Key Cryosphere Parameters", Changes and impacts of glaciers, snow cover and permafrost and how to deal with them (Grant NO.2019QZKK0201), and Pan-tertiary environmental change and the construction of green silk road (Grant NO.XDA20000000), the research group of Zhang Yinsheng, Institute of Qinghai-Tibet Plateau, Chinese Academy of Sciences developed downscaled snow water equivalent products in the Qinghai-Tibet Plateau. The sub-pixel space-time decomposition algorithm was used to downscale the 0.05° daily snow depth data set (2000-2018) over the Qinghai-Tibet Plateau. And the snow depth depletion model was used to supplement the estimation of the snow depth value in the shallow snow area that cannot be detected by passive microwave remote sensing. Finally, based on the snow density grid data, the snow depth data is converted into snow water equivalent data.
YAN Dajiang, ZHANG Yinsheng
This data is a high-resolution soil freeze/thaw (F/T) dataset in the Qinghai Tibet Engineering Corridor (QTEC) produced by fusing sentinel-1 SAR data, AMSR-2 microwave radiometer data, and MODIS LST products. Based on the newly proposed algorithm, this product provides the detection results of soil F/T state with a spatial resolution of 100 m on a monthly scale. Both meteorological stations and soil temperature stations were used for results evaluation. Based on the ground surface temperature data of four meteorological stations provided by the national meteorological network, the overall accuracy of soil F/T detection products achieved 84.63% and 77.09% for ascending and descending orbits, respectively. Based on the in-situ measured 5 cm soil temperature data near Naqu, the average overall accuracy of ascending and descending orbits are 78.58% and 76.66%. This high spatial resolution F/T product makes up traditional coarse resolution soil F/T products and provides the possibility of high-resolution soil F/T monitoring in the QTEC.
ZHOU Xin , LIU Xiuguo , ZHOU Junxiong , ZHANG Zhengjia , CHEN Qihao , XIE Qinghua
Based on long-term series Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products, daily snow cover products without data gaps at 500 m spatial resolution over the Tibetan Plateau from 2002 to 2021 were generated by employing a Hidden Markov Random Field (HMRF) modeling technique. This HMRF framework optimally integrates spectral, spatiotemporal, and environmental information together, which not only fills data gaps caused by frequent clouds, but also improves the accuracy of the original MODIS snow cover products. In particular, this technology incorporates solar radiation as an environmental contextual information to improve the accuracy of snow identification in mountainous areas. Validation with in situ observations and snow cover derived from Landsat-8 OLI images revealed that these new snow cover products achieved an accuracy of 98.31% and 92.44%, respectively. Specifically, the accuracy of the new snow products is higher during the snow transition period and in complex terrains with higher elevations as well as sunny slopes. These gap-free snow cover products effectively improve the spatiotemporal continuity and the low accuracy in complex terrains of the original MODIS snow products, and is thus the basis for the study of climate change and hydrological cycling in the TP.
HUANG Yan , XU Jianghui
The vegetation type map was created by the random forest (RF) classification approach, based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. According to vegetation characteristics, four types include alpine swamp meadow (ASM), alpine meadow (AM), alpine steppe (AS), and alpine desert (AD) were classified in this map. Based on a spatial resolution of 30 m, the map can provide more detailed vegetation information.
ZHOU Defu, ZOU Defu, ZOU Defu, Zhao Lin, ZHAO Lin, Liu Guangyue, LIU Guangyue, Du Erji, DU Erji, LI Zhibin , LI Zhibin, Wu Tonghua, WU Xiaodong, CHEN Jie CHEN Jie
Surface melting is the primary reason that affects the mass balance of Greenland ice sheet. At the same time, ice and snow have high albedo, and ice sheet surface melting will cause the difference of radiation energy budget, and then affects the energy exchange between sea-land-air. The high-resolution ice sheet surface melting product provides important information support for the study of Greenland ice sheet surface melting and its response to global climate change. This dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Greenland ice sheet surface melt daily product for 1985, 2000, 2015 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Greenland ice sheet, and the data set is stored as *.nc.
WEI Siyi,
Snow, ice, and glaciers have the highest albedo of any part of Earth's surface. The increase in melting of the polar ice sheet results in a rapid and sequential decrease in albedo and subsequently influences the global energy balance. The hydrological system derived from surface melt and basal meltwater will affect the dynamic stability of ice sheet and therefore mass balance. The dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Antarctic ice sheet surface melt daily product for 1985-1986, 2000-2001, 2015-2016 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. It better reflects the melting gradient of mountainous area, groundline area and ice shelf over time, DSSMIS has a higher accuracy. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Antarctic ice sheet, and the data set is stored as *.nc.
WEI Siyi,
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn