This dataset contains monthly 0.05°×0.05° (1982, 1985, 1990, 1995, and 2000) and 0.01°×0.01° (2005, 2010, 2015 and 2017) LST products in Qilian Mountain Area. The dataset was produced based on SW algorithm by AVHRR BT from thermal infrared channels (CH4: 10.5µm to 11.3µm; CH5: 11.5µm to 12.5µm) at a resolution of 0.05°, MYD21A1 LST products at a resolution of 0.01° along with some auxiliary datasets. The auxiliary datasets include IGBP land cover type, AVHRR NDVI products, Modern Era Retrospective-Analysis for Research and Applications-2 (MERRA-2) reanalysis data, ASTER GED, Lat/Lon and the Julian Day information.
WANG Junbo, SHAO Xuemei
Original information on the long-term dry-wet index (1500-2000) in western China is obtained by integrating data on dry-wet/drought-flood conditions and precipitation amounts in the western region published over more than a decade. The integrated data sets include tree rings, ice cores, lake sediments, historical materials, etc., and there are more than 50 such data sets. In addition to widely collecting representative data sets on dry-wet changes in the western region, this study also clarifies the main characteristics of the dry-wet changes and climate zones in the western region, and the long-term dry-wet index sequence was generated by extracting representative data from different zones. The data-based dry-wet index sequence has a 10-year temporal resolution for five major characteristic climate zones in the western region over nearly four hundred years and a high resolution (annual resolution) for three regions over the past five hundred years. The five major characteristic climate zones in the western region with a 10-year dry-wet index resolution over the last four hundred years are the arid regions, plateau bodies, northern Xinjiang, Hetao region, and northeastern plateau, and the three regions with a annual resolution over the last five hundred years are the northeastern plateau, Hetao region, and northern Xinjiang. For a detailed description of the data, please refer to the data file named Introduction of Dry-Wet Index Sequence Data for West China.doc.
QIAN Weihong, LIN Xiang
The application of general circulation models (GCMs) can improve our understanding of climate forcing. In addition, longer climate records and a wider range of climate states can help assess the ability of the models to simulate climate differences from the present. First, we try to find a substitute index that combines the effects of temperature in different seasons and then combine it with the Beijing stalagmite layer sequence and the Qilian tree-ring sequence to carry out a large-scale temperature reconstruction of China over the past millennium. We then compare the results with the simulated temperature record based on a GCM and ECH-G for the past millennium. Based on the 31-year average, the correlation coefficient between the simulated and reconstructed temperature records was 0.61 (with P < 0.01). The asymmetric V-type low-frequency variation revealed by the combination of the substitute index and the simulation series is the main long-term model of China's millennium-scale temperature. Therefore, solar irradiance and greenhouse gases can account for most of the low-frequency variation. To preserve low-frequency information, conservative detrended methods were used to eliminate age-related growth trends in the experiment. Each tree-ring series has a negative exponential curve installed while retaining all changes. The four fields of the combined 1000-yr (1000 AD-2000 AD) reconstructed temperature records derived from stalagmite and tree-ring archives (excel table) are as follows: 1) Year 2) Annual average temperature reconstruction 3) Reconstructed temperature deviation 4) Simulated temperature deviation
TAN Ming
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn