This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from April 13 to December 31 in 2021. The site (115.7923° E, 40.3574° N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&EC150) was 0 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC) (class1-9). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. There were lots of negative values of H2O density in winter where filling by -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XIAO Qing, XU Ziwei, BAI Junhua
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2021. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XIAO Qing, XU Ziwei, BAI Junhua
This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2021. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 31 in 2021. The site (115.7880° E, 40.3491°N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC) (class 1 to 9). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
In the context of global change, the spatio-temporal continuous high-quality high-resolution long time series precipitation data set is of great significance for understanding the global "water carbon energy" and biogeochemical cycle mechanism. The daily total volume controlled merging and disaggregation algorithm (DTVCMDA) proposed in this study effectively considers the characteristics of continuous space-time and high spatial and temporal resolution of reanalysed precipitation data, as well as the high quality of ground analysis data, A set of AERA5 Asia (0.1 °, hourly, 1951-2015, Asia) precipitation data set with high quality and high spatial and temporal resolution for more than 70 years of long time series in Asia has been produced. The main features of the dataset are as follows: (1) AERA5 Asia is a set of data sets with high resolution, high quality, space-time continuity and long time series; (2) AERA5 Asia is significantly better than IMERG Final and ERA5 Land precipitation data, especially in terms of system deviation. In general, the deviation of AERA5 Asia, IMERG Final and ERA5 Land compared with ground observation is~5%,~11% and~20% respectively; (3) In extreme heavy rainfall (such as typhoons "Tamei" and "Tiantu"), the quality of AERA5 Asia is also significantly better than ERA5 Land and IMERG Final. AERA5 Asia will provide stable and reliable precipitation data support for relevant research in the weather, climate, hydrology and other fields in Asia, especially in China.
MA Ziqiang, MA Yaoming, MA Weiqiang*, 许金涛 XU Jintao
The water resources simulation data of Southeast Asian countries and the Lancang Mekong River Basin (1980-2019) is the result of using the meteorological data output from the WRF model as the driving data and simulation through the ways model. The data includes evapotranspiration, surface runoff, underground runoff, total runoff, groundwater, infiltration and soil moisture data of Southeast Asia land area from 1980 to 2019. The temporal resolution is daily and the spatial resolution is 3km. The data is generally good, but due to the limitations of the model, there are certain errors in the simulation results of a few variables. It is not recommended to use the research with high requirements for data accuracy. The data can reflect the situation of water resources in Southeast Asia to a certain extent, and provide data support for relevant research.
LIU Junguo
This product provides the data set of key variables of the water cycle of major Arctic rivers (North America: Mackenzie, Eurasia: Lena from 1971 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 0.1degree and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under long-term climate change, and can also be used to compare and verify remote sensing data products and the simulation results of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
The evapotranspiration (ET) is an important variable connecting land energy balance, water cycle and carbon cycle. Accurate monitoring and estimations of ET are essential not only for water resources management but also for simulating regional, global climate, and hydrological cycles. Remote sensing technology is an effective method to monitor ET. At present, a variety of ET remote sensing products have been produced and released. However, in the process of validation, there is a problem of spatial scale mismatch between ET remote sensing estimation value and station observation value, especially on heterogeneous surface. Therefore, it is very important to obtain the ground truth ET values at the satellite pixel scale by upscaling method on heterogeneous surface. In this study, using the station observation data and multi-source remote sensing information, the ET observed at a single ground station is upscaled to the satellite pixel scale, and the ground truth ET values at the satellite pixel scale in Heihe River Basin is obtained. Based on the ET data observed by the eddy covariance (EC) at 15 stations (3 superstations and 12 ordinary stations) in the Heihe integrated observatory network, combined with the fused high-resolution remote sensing data (surface temperature, vegetation index, net radiation, etc.) and atmospheric reanalysis data, the upscaling is carried out to obtain the ground truth ET at the satellite pixel scale. The distribution diagram is shown in Figure 1. Specifically, firstly, the spatial heterogeneity of the spatial heterogeneity of the land surface hydrothermal conditions was evaluated; Secondly, nine upscaling methods (the integrated Priestley-Taylor equation method, the Penman-Monteith equation combined with EnKF method, the Penman-Monteith equation combined with SCE_UA method, EC observation value, artificial neural network, Bayesian linear regression, deep belief network, Gaussian process regression, and random fores and directly taking the EC observation value as the ground truth ET) were compared and analyzed through direct validation and cross-validation; Finally, a comprehensive method (directly using the EC observation value on the homogeneous underlying surface; using the Gaussian process regression method for upscaling on the moderately heterogeneous underlying surface and highly heterogeneous underlying surface) was optimized to obtain the groud truth ET at the satellite pixel scale at 15 typical underlying surfaces in Heihe River Basin (2010-2016, spatial resolution of 1km). The results showed that the ground truth ET at the satellite pixel scale is relatively reliable. Compared with the pixel scale reference value (LAS observation value), the MAPE of the ground turth ET at the satellite pixel scale at the three superstations are 1.57%, 3.23% and 4.59% respectively, which can meet the needs of the validation of ET remote sensing products. For all site information and data processing, please refer to Liu et al. (2018), and for upscaling methods, please refer to Li et al. (2021).
LIU Shaomin, LI Xiang , XU Ziwei
This data set is the version 2 of "High temporal and spatial resolution precipitation data of Upper Brahmaputra River Basin (1981-2016) ", with additional data from 2017 to 2019. This data set describes the temporal and spatial distribution of precipitation in the Upper Brahmaputra River Basin. We integrate (CMA, GLDAS, ITP-Forcing, MERRA2, TRMM) five sets of reanalysis precipitation products and satellite precipitation products, and combine the observation precipitation of 9 national meteorological stations from China Meteorological Administration (CMA) and 166 rain gauges of the Ministry of Water Resources (MWR) in the basin. The time range is 1981-2019, the time resolution is 3 hours, the spatial resolution is 5 km, and the unit is mm/h. The data will provide better data support for the study of Upper Brahmaputra River Basin, and can be used to study the response of hydrological process to climate change. Please refer to the instruction document uploaded with the data for specific usage information.
WANG Yuanwei, WANG Lei, LI Xiuping, ZHOU Jing
The SZIsnow dataset was calculated based on systematic physical fields from the Global Land Data Assimilation System version 2 (GLDAS-2) with the Noah land surface model. This SZIsnow dataset considers different physical water-energy processes, especially snow processes. The evaluation shows the dataset is capable of investigating different types of droughts across different timescales. The assessment also indicates that the dataset has an adequate performance to capture droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is evident over snow-covered areas (e.g., Arctic region) and high-altitude areas (e.g., Tibet Plateau). Moreover, the analysis also implies that SZIsnow dataset is able to well capture the large-scale drought events across the world. This drought dataset has high application potential for monitoring, assessing, and supplying information of drought, and also can serve as a valuable resource for drought studies.
WU Pute, TIAN Lei, ZHANG Baoqing
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2020. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2020-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XIAO Qing, XU Ziwei, BAI Junhua
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 14 to December 31 in 2020. The site (115.7880° E, 40.3491°N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2015) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2020. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2020-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
This dataset contains the fluxes and meteorological data of Weishan (Gaoying) flux site of Tsinghua University from May 17, 2005 to September 26, 2006. The site (116.0542° E, 36.6487° N, 30 m above sea level) was built on March 18, 2005 and is located in Xiaozhuang Town, Chiping District, Liaocheng City, Shandong Province. It belongs to Weishan Irrigation District along the lower Yellow River. The local climate is characterized as temperate monsoons, with an average annual temperature of 13.8 ℃, an average annual precipitation of 553mm, most of which occurs between June and October, and an average annual potential evaporation of 1950mm. The soil type is silt loam. For the soil of the top 5 cm, the average saturated soil water content, field capacity and wilting point in volumetric values are 0.43, 0.33 and 0.10 m3m-3, respectively. The height of the flux tower is 10m, and the area within about 1 km radius around the flux tower is largely homogeneous winter wheat-summer maize rotation cropland. The winter wheat is generally sown in mid-October and harvested in early June of the following year, while the summer maize is usually planted directly into the stubbles of wheat at the same location immediately after the harvest of wheat and is harvested in late September to early October. See the file named “Supplementary data_WeishanGaoying20052006.xlsx” for specific sowing, harvesting and irrigation dates. The surface flux data is measured by the eddy covariance system, which is composed of a three-dimensional sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, UT, USA) and an open-path infrared gas analyzer (IRGA) (LI-7500, LI-COR, Inc., Lincoln, NE, USA) with an installation height of 3.7m. The 30-minute net ecosystem carbon exchange (NEE), latent heat flux (LE) and sensible heat flux (H) data were obtained after the raw 10Hz data were processed by Eddypro software. The preprocessing steps included despiking, double coordinate rotation, 30-min block averaging, time lag compensation, spectral corrections, the Webb-Pearman-Leuning (WPL) density correction, a quality check using the “0-1-2 system”. Then the 30-min data were screened as follows: (1) remove bad quality fluxes with quality flag 2; (2) limit H and LE to - 200 ~ 500 W m-2 and - 200 ~ 800 W m-2, respectively; (3) the data during the precipitation events were excluded. Then, REddyproc software is used to filter the data under low turbulence mixing conditions (i.e. filter the flux data according to the friction wind speed u*), fill the gaps in the time series, and then the NEE was divided into ecosystem respiration (Reco) and gross primary production (GPP) by the nighttime partitioning method. The published dataset includes: year, month, day, time, atmospheric pressure (P), infrared surface temperature (Tsurf), wind speed (Ws), wind direction (Wd), air temperature (Tair) and relative humidity (rH) at 2m, downward short wave radiation (Rsd), upward short wave radiation (Rsu), downward long wave radiation (Rld), upward long wave radiation (Rlu), Net radiation (Rn), incident photosynthetically active radiation (PAR_dn), reflected photosynthetically active radiation (PAR_up), precipitation (precip), groundwater level (GW), 5cm/10cm/20cm/40cm/80cm/160cm soil water content (soil_VW_ 5cm / 10cm / 20cm / 40cm / 80cm / 160cm) and soil temperature (soil_T_5cm / 10cm / 20cm / 40cm / 80cm / 160cm), soil heat flux at 5cm depth (soil_ G) , raw data of net ecosystem carbon exchange (NEE_raw), raw data of latent heat flux (LE_raw), raw data of sensible heat flux (H_raw), net ecosystem carbon exchange after gap filling (NEE_ f) , latent heat flux after gap filling (LE_f), sensible heat flux after gap filling (H_f), ecosystem respiration imputation (Reco_f), gross primary productivity (GPP_f). The data are stored in .xlsx format at 30-minute intervals. Null values in the dataset are represented by NA. Please refer to Lei and Yang (2010a, 2010b) for detailed information of this site and the observation instruments.
LEI Huimin
Accurate evapotranspiration (ET) estimation is important for understanding hydrological cycle and water resources management in the cropland. Based on eight flux sites within the North China Plain (NCP) and the surrounding area, which were integrated together for the first time, we applied support vector regression method to develop ET dataset for the cropland in NCP from 2001 to 2015 with 1km spatial resolution and eight-day temporal interval.
LEI Huimin
Accurate evapotranspiration (ET) estimation is important for understanding hydrological cycle and water resources management in the cropland. Based on eight flux sites within the North China Plain (NCP) and the surrounding area, which were integrated together for the first time, we applied support vector regression method to develop ET dataset for the cropland in NCP from 1982 to 2015 with 1/12° spatial resolution and eight-day temporal interval.
LEI Huimin
As an important part of global semi-arid grassland, adequately understanding the spatio-temporal variability of evapotranspiration (ET) over the temperate semi-arid grassland of China (TSGC) could advance our understanding of climate, hydrological and ecological processes over global semi-arid areas. Based on the largest number of in-situ ET measurements (13 flux towers) within the TSGC, we applied the support vector regression method to develop a high-quality ET dataset at 1 km spatial resolution and 8-day timescale for the TSGC from 1982 to 2015. The model performed well in validation against flux tower‐measured data and comparison with water-balance derived ET.
LEI Huimin
Meteorological forcing dataset for Arctic River Basins includes five elements: daily maximum, minimum and average temperature, daily precipitation and daily average wind speed. The data is in NetCDF format with a horizontal spatial resolution of 0.083°, covering Yenisy, Lena, ob, Yukon and Mackenzie catchments. The data can be used to dirve hydrolodical model (VIC model) for hydrological process simulation of the Arctic River Basins. The further quality control were made for daily observation data from Global Historical Climatology Network Daily database(GHCN-D), Global Summary of the Day (GSPD),The U.S. Historical Climatology Network (USHCN),Adjusted and homogenized Canadian climate data (AHCCD) and USSR / Russia climate data set (USSR / Russia). The thin plate spline interpolating method, which similar to the method used in PNWNAmet datasets (Werner et al., 2019), was employed to interpolate daily station data to 5min spatial resolution daily gridded forcing data using WorldClim and ClimateNA monthly climate normal data as a predictor.
ZHAO Qiudong, WU Yuwei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn