Meteorological elements of the dataset include the near-surface land-air exchange parameters, such as downward/upward longwave/shortwave radiation flux, momentum flux, sensible heat flux, latent heat flux, etc. In addition, the vertical distributions of 3-dimensional wind, temperature, humidity, and pressure from the surface to the tropopause are also included. Independent evaluations were conducted for the dataset by comparison between the observational data and the most recent ERA5 reanalysis data. The results demonstrate the accuracy and superiority of this dataset against reanalysis data, which provides great potential for future climate change research.
LI Fei, Ma Shupo, ZHU Jinhuan, ZOU Han , LI Peng , ZHOU Libo
The Tibetan Plateau Subregional Dynamical Downscaling Dataset-Standard Year (TPSDD-Standard) is a high spatial-temporal resolution gridded dataset for the study of land-air exchange processes and lower atmospheric structure over the entire Tibetan Plateau, taking into account the climatic characteristics of each subregion of the Tibetan Plateau. Based on the 500 hPa multi-year average of the geopotential height field over the Tibetan Plateau, the year (2014) with the largest pattern correlation coefficient with this geopotential height field is selected as the standard year, which means that it can roughly reflect the multi-year average status of the atmosphere over the Tibetan Plateau. The temporal resolution of this data is 1 hour and the spatial resolution is 5 km. Meteorological elements of the dataset include near-surface land-air exchange parameters such as downward/upward long-wave/short-wave radiation fluxes, sensible heat fluxes, latent heat fluxes, etc. In addition, the 3-dimensional vertical distribution of wind, temperature, humidity, and pressure from the surface to the top of the troposphere is also included. The dataset was independently evaluated by comparing the observed data with the latest ERA5 reanalysis data. The results demonstrate the accuracy and superiority of the dataset, which offers great potential for future climate change studies.
LI Fei, Ma Shupo, ZHU Jinhuan, ZHOU Libo , LI Peng , ZOU Han
This data set is the conventional meteorological observation data of Maqu grassland observation site in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity, air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
We developed a 1-km resolution long-term soil moisture dataset of China derived through machine learning trained with in-situ measurements of 1,648 stations, named as SMCI1.0 (Soil moisture of China based on In-situ data, Li et al, 2022). SMCI1.0 provides 10-layer soil moisture with 10 cm intervals up to 100 cm deep at daily resolution over the period 2000-2020. Random Forest is used to predict soil moisture using ERA5-land time series, leaf area index, land cover type, topography and soil properties as covariates. Using in-situ soil moisture as the benchmark (The data comes from China Meteorological Administration), two independent experiments are conducted to investigate the estimation accuracy of the SMCI1.0: year-to-year experiment (ubRMSE ranges from 0.041-0.052 and R ranges from 0.883-0.919) and station-to-station experiment (ubRMSE ranges from 0.045-0.051 and R ranges from 0.866-0.893). As SMCI1.0 is based on in-situ data, it can be useful complements of existing model-based and satellite-based datasets for various hydrological, meteorological, and ecological analyses and modeling, especially for those applications requiring high resolution SM maps. Please read the readme file for more details. We provided two versions with different resolution, i.e., 30 arc seconds (~1km) and 0.1 degree (~9km).
SHANGGUAN Wei, LI Qingliang , SHI Gaosong
This meteorological data is the basic meteorological data of air temperature, relative humidity, wind speed, precipitation, air pressure, radiation, soil temperature and humidity observed in the observation site (86.56 ° e, 28.21 ° n, 4276m) of the comprehensive observation and research station of atmosphere and environment of Qomolangma, Chinese Academy of Sciences from 2019 to 2020. Precipitation is the daily cumulative value. All data are observed and collected in strict accordance with the instrument operation specifications, and some obvious error data are eliminated when processing and generating data The data can be used by students and scientific researchers engaged in meteorology, atmospheric environment or ecology (Note: when using, it must be indicated in the article that the data comes from Qomolangma station for atmospheric and environmental observation and research, Chinese Academy of Sciences (QOMS / CAS))
XI Zhenhua
1) This data is the aridity index data calculated based on the latest simulation results of 22 cmip6 coupled global climate models; 2) The calculation formula is p / PET (ratio of precipitation to potential evapotranspiration), and the calculation of pet is based on PM formula; 3) The monthly data of the Great Lakes region of Central Asia from January 1900 to December 2100, including ssp2-4.5 and ssp5-8.5, with a resolution of 1 degree * 1 degree; 4) The data can be used to analyze the distribution and evolution of dry and wet pattern in the Great Lakes region of Central Asia under medium and high emission scenarios in the future. The data has been converted into 3-mongth running means.
HUA Lijuan
This data set is the data set of drought index AI from 1948 to 2018, with spatial coverage of 60s-60n, 180e-180w, spatial resolution of 0.5 °, and temporal resolution of year. The potential evapotranspiration (PET) is calculated based on penman Monteith model, in which the wind speed, relative humidity, sensible heat, latent heat, soil heat flux and surface pressure data are from GLDAS, air temperature data are from CPC, and precipitation data are also from CPC. GLDAS data is divided into two sections. The first section is from GLDAS_ NOAH10_ M v2.0 series, covering the period from 1948 to 2015; The second paragraph is from GLDAS_ NOAH10_ M v2.1, covering the period from 2000 to now, we spliced the overlapping data segments from 2000 to 2014, subtracted the average values of wind speed, relative humidity, sensible heat, latent heat, soil heat flux and surface air pressure of the two sets of data in this period, obtained the difference, and added the difference to the data set of v2.1 to calculate pet.
YU Haipeng YU Haipeng
The data set contains atmospheric aerosol PM10, PM2.5 and PM1 data and ambient air temperature and humidity from meduo National Climate Observatory (29 ° 18'n, 95 ° 19'e, 1305.0m above sea level) in meduo region, Tibet. The observation instrument is grimm-180 environmental particle analyzer. The observation time is from April 8, 2021 to May 22, 2021. The data time resolution is 10 seconds. The abnormal data generated during the operation of the instrument has been eliminated. During the observation period, due to the influence of the South Asian monsoon, the air humidity is high, and the surrounding of the observation site is less disturbed by human activities. This data set provides basic data for studying the physical characteristics, temporal and spatial variation characteristics and source analysis of atmospheric dust aerosols in Southeast Tibet. Supported project: Topic 2 of the sixth research task of the second comprehensive scientific investigation of the Qinghai Tibet Plateau (2019qzkk0602).
HUANG Jianping, ZHANG Lei, TIAN Pengfei, SHI Jinsen
Central Asia (referred to as CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption assessments. We applied three bias-corrected global climate models (GCMs) to conduct 9-km resolution dynamical downscaling in CA. A high-resolution climate projection dataset over CA (the HCPD-CA dataset) is derived from the downscaled results, which contains four static variables and ten meteorological elements that are widely used to drive ecological and hydrological models. The static variables are terrain height (HGT, m), land use category (LU_INDEX, 21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category (ISLTYP, 16 categories). The meteorological elements are daily precipitation (PREC, mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m (U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux at surface (SWD/LWD, W/m2), and daily mean surface pressure (PSFC, Pa). The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. The results show the data product has good quality in describing the climatology of all the elements in CA, which ensures the suitability of the dataset for future research. The main feature of projected climate changes in CA in the near-term future is strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant increase in downward shortwave and longwave flux at surface, with minor changes in other elements. The HCPD-CA dataset presented here serves as a scientific basis for assessing the impacts of climate change over CA on many sectors, especially on ecological and hydrological systems.
QIU Yuan QIU Yuan
Based on China's daily meteorological elements data set and National Geographic basic data, the extreme precipitation, extreme temperature, drought intensity, drought frequency and other indicators in Hengduan Mountain area were calculated by using rclimdex, nspei and bilinear interpolation methods. The data set includes basic data set of disaster pregnant environment, basic data set of extreme precipitation index, basic data set of extreme temperature index, basic data set of drought intensity and frequency. The data set can provide a basic index system for regional extreme high temperature, precipitation and drought risk assessment.
SUN Peng
The dataset contains observed climate data (1/1/2019-12/31/2019) from two automatic meteorological station located in the Qinghai Lake Basin. The niaodao station (36°58′N,99°52′E) is located in Gonghe County, Hainan Prefecture, Qinghai Province, and the wayanshan station (37°44′ N,100°05′ E) is located in Gangcha County, Haibei Prefecture, Qinghai Province. The observed elements include air temperature (℃) and relative humidity (%) at three layers (1m, 5m, and 10m), atmospheric pressure (hPa), and photosynthetically active radiation (W/m2). Both stations use CR1000 to collect climate data and record it every half an hour, the air temperature and humidity were measured by hmp155a, the atmospheric pressure was measured by CS106 and the photosynthetically active radiation was measured by LI200R. Our dataset will support the study of optimizing the ecological security barrier system in the key urbanized areas of the Tibetan Plateau.
CHEN Kelong, CHEN Zhirong
The data includes the daily mean value of stable isotope δ18O in precipitation, the air temperature and precipitation amounts in Bomi in 2008; the precipitation samples are collected by Bomi meteorological station, and the stable isotope of precipitation is measured at the Laboratoire des Sciences du Climat et de l’Environnement, France., The δ18O amounts were measured by equilibration on a MAT-252 mass spectrometer, with an analytical precision of 0.05‰. The air temperatures and precipitation amounts were recorded for each precipitation events at Bomi meteorological stations, through the average of the observed temperature before and after the precipitation event, and through the total precipitation amount for each event. The data study has been published in the Journal of Climate, entitled Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling.
GAO Jing
The data set is the daily precipitation stable isotope data (δ 18O, δ D, d-excess) from Satkhira, Barisal and sylhet3 stations in Bangladesh from 2017 to 2018. The data set was collected by Bangladesh Atomic Energy Commission (BAEC) and measured by picarro l2130i wavelength scanning cavity ring down spectrometer in the Key Laboratory of environment and surface processes, Institute of Qinghai Tibet Plateau, Chinese Academy of Sciences. Sampling location and time of three observation points: Satkhira :2017.03.11-2018.07.16 Barisal:2017.03.05-2018.07.02 Sylhet : 2017.02.20-2018.09.04
GAO Jing
Precipitation stable isotopes (2H and 18O) are adequately understood on their climate controls in the Tibetan Plateau, especially the north of Himalayas via about 30 years’ studies. However, knowledge of controls on precipitation stable isotopes in Nepal (the south of Himalayas), is still far from sufficient. This study described the intra-seasonal and annual variations of precipitation stable isotopes at Kathmandu, Nepal from 10 May 2016 to 21 September 2018 and analysed the possible controls on precipitation stable isotopes. All samples are located in Kathmandu, the capital of Nepal (27 degrees north latitude, 85 degrees east longitude), with an average altitude of about 1400 m. Combined with the meteorological data from January 1, 2001 to September 21, 2018, the values of precipitation (P), temperature (T) and relative humidity (RH) are given.
GAO Jing
The data are collected from the automatic weather station (AWS, Campbell company) in the moraine area of the 24K glacier in the Southeast Tibet Plateau, Chinese Academy of Sciences. The geographic coordinates are 29.765 ° n, 95.712 ° E and 3950 m above sea level. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), net radiation (w / m2), water vapor pressure (kPa) and air pressure (mbar). In the original data, an average value was recorded every 30 minutes before October 2018, and then an average value was recorded every 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The net radiation probe is nr01, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the data has undergone strict quality control. The original abnormal data of 10 minutes and 30 minutes are removed first, and then the arithmetic mean of each hour is calculated. Finally, the daily value is calculated. If the number of hourly data is less than 24, the data is removed, and the corresponding date data in the data table is empty. In addition to the lack of some parameter data due to the thick snow and low temperature in winter and spring, the data can be used by scientific researchers who study climate, glacier and hydrology through strict quality control.
Luo Lun
The data set contains the stable oxygen isotope data of ice core from 1864 to 2006. The ice core was obtained from Noijinkansang glacier in the south of Southern Tibetan Plateau, with a length of 55.1 meters. Oxygen isotopes were measured using a MAT-253 mass spectrometer (with an analytical precision of 0.05 ‰) at the Key Laboratory of CAS for Tibetan Environment and Land Surface Processes, China. Data collection location: Noijinkansang glacier (90.2 ° e, 29.04 ° n, altitude: 5950 m)
GAO Jing
This data set includes the daily average values of air temperature, air pressure, relative humidity, wind speed, precipitation, total radiation, p2.5 concentration, short wave radiation, etc. observed by the comprehensive observation and research station of atmosphere and environment of Everest from 2017 to 2018.
MA Yaoming
This data set includes the daily average data of air temperature, relative humidity, precipitation, wind speed, wind direction, net radiation, air pressure, etc. of Southeast Tibet station from January 1, 2017 to December 31, 2018.
Luo Lun, ZHU Liping
Near surface atmospheric forcing data were produced by using Wether Research and Forecasting (WRF) model over the Heihe River Basin at hourly 0.05 * 0.05 DEG resolution, including the following variables: 2m temperature, surface pressure, water vapor mixing ratio, downward shortwave & upward longwave radiation, 10m wind field and the accumulated precipitation. The forcing data were validated by observational data collected by 15 daily Chinese Meteorological Bureau conventional automatic weather station (CMA), a few of Heihe River eco-hydrological process comprehensive remote sensing observation (WATER and HiWATER) site hourly observations were verified in different time scales, draws the following conclusion: 2m surface temperature, surface pressure and 2m relative humidity are more reliable, especially 2m surface temperature and surface pressure, the average errors are very small and the correlation coefficients are above 0.96; correlation between downward shortwave radiation and WATER site observation data is more than 0.9; The precipitation agreed well with observational data by being verified based on rain and snow precipitation two phases at yearly, monthly, daily time scales . the correlation coefficient between rainfall and the observation data at monthly and yearly time scales were up to 0.94 and 0.84; the correlation between snowfall and observation data at monthly scale reached 0.78, the spatial distribution of snowfall agreed well with the snow fractional coverage rate of MODIS remote sensing product. Verification of liquid and solid precipitation shows that WRF model can be used for downscaling analysis in complex and arid terrain of Heihe River Basin, and the simulated data can meet the requirements of watershed scale hydrological modeling and water resources balance. The data for 2000-2012 was provided in 2013. The data for 2013-2015 was updated in 2016. The data for 2016-2018 was updated in 2019. The data for 2019-2021 was updated in 2021.
PAN Xiaoduo
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn