The data set includes carbon isotope data of different regions of the Tibetan Plateau and different environmental (carbon isotope data of black carbon and organic carbon in aerosols from 10 typical stations of the Qinghai Tibet Plateau, carbon isotope data of black carbon and water insoluble organic carbon in 11 snow pits in different years, and carbon isotope data of water-soluble organic carbon in monsoon precipitation from 11 stations of the Qinghai Tibet Plateau and its surrounding areas), All samples were collected at each site, and the content and δ 13C and Δ 14C data, which can be used to accurately assess the contribution proportion of atmospheric carbon aerosols, carbon particles deposited on glaciers and water-soluble organic carbon in precipitation from fossil fuels and biomass fuels.
LI Chaoliu
This data set includes the light absorption data of carbon components in the atmosphere and precipitation at typical stations on the Tibetan Plateau (Ranwu (2018-2021), Namco (2013-2016), Everest (2013-2016), Lulang (2015-2016)). All samples were collected on the spot from various sampling points. The concentrations of black carbon and water-soluble organic carbon, as well as the light absorption data were measured, using the index (MAC value) representing the light absorption capacity, The MAC values of light absorption of water-soluble organic carbon and black carbon are calculated. This data is of great significance for evaluating the radiative forcing of carbon particles in the atmosphere, and is an important basic data input for model simulation.
LI Chaoliu
Based on the monthly precipitation data of 262 rain gauges, WRF and ERA5 precipitation data in the Yarlung Zangbo River basin, the daily precipitation data with a resolution of 10km from 1951 to 2020 in the Yarlung Zangbo River basin and seven sub basins are reconstructed using random forest learning algorithm. This data has been verified by the single point of the station and performs well in terms of annual and seasonal changes. And the data has been reverse evaluated by the hydrological model, which is used to drive the VIC hydrological model to simulate the runoff change of Yajiang River basin and each sub basin, and verified by the measured runoff, MODIS and glacier cataloging data. On the basis of the original first edition, this data has considered the spatial distribution characteristics of precipitation, which can better describe the precipitation characteristics in alpine regions.
SUN He
This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
This product provides the data set of key variables of the water cycle of major Arctic rivers (North America: Mackenzie, Eurasia: Lena from 1971 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 0.1degree and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under long-term climate change, and can also be used to compare and verify remote sensing data products and the simulation results of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
Near-surface air temperature variability and the reliability of temperature extrapolation within glacierized regions are important issues for hydrological and glaciological studies that remain elusive because of the scarcity of high-elevation observations. Based on air temperature data in 2019 collected from 12 automatic weather stations, 43 temperature loggers and 6 national meteorological stations in six different catchments, this study presents air temperature variability in different glacierized/nonglacierized regions and assesses the robustness of different temperature extrapolations to reduce errors in melt estimation. The results show high spatial variability in temperature lapse rates (LRs) in different climatic contexts, with the steepest LRs located on the cold-dry northwestern Tibetan Plateau and the lowest LRs located on the warm-humid monsoonal-influenced southeastern Tibetan Plateau. Near-surface air temperatures in high-elevation glacierized regions of the western and central Tibetan Plateau are less influenced by katabatic winds and thus can be linearly extrapolated from off-glacier records. In contrast, the local katabatic winds prevailing on the temperate glaciers of the southeastern Tibetan Plateau exert pronounced cooling effects on the ambient air temperature, and thus, on-glacier air temperatures are significantly lower than that in elevation-equivalent nonglacierized regions. Consequently, linear temperature extrapolation from low-elevation nonglacierized stations may lead to as much as 40% overestimation of positive degree days, particularly with respect to large glaciers with a long flowline distances and significant cooling effects. These findings provide noteworthy evidence that the different LRs and relevant cooling effects on high-elevation glaciers under distinct climatic regimes should be carefully accounted for when estimating glacier melting on the Tibetan Plateau.
YANG Wei
Glacier surface micrometeorology is to observe the wind direction, wind speed, temperature, humidity, air pressure, four component radiation, ice temperature and precipitation at a certain height of the glacier surface. Glacier surface micrometeorology monitoring is one of the important contents of glacier monitoring. It is an important basic data for the study of energy mass balance, glacier movement, glacier melt runoff, ice core and other related model simulation, which lays a foundation for exploring the relationship between climate change and glacier change. Automatic monitoring is mainly carried out by setting up Alpine weather stations on the glacier surface, and portable weather stations can also be used for short-term flow monitoring. In recent years, more than 20 glacier surfaces in Tianshan, West Kunlun, Qilian, Qiangtang inland, Tanggula, Nianqing Tanggula, southeastern Tibet, Hengduan and Himalayas have been monitored. The data set is monthly meteorological data of glacier area and glacier end.
YANG Wei
Mercury is a global pollutant.The Qinghai-Tibet Plateau is adjacent to South Asia, which currently has the highest atmospheric mercury emissions, and could be affected by long-distance transport.The history of atmospheric mercury transport and deposition can be well reconstructed using ice cores and lake cores. The history of atmospheric mercury deposition since the industrial revolution was reconstructed based on 8 lake cores and 1 ice core from the Tibetan Plateau and the southern slope of the Himalayas.This data set contains 8 lake core data from Namtso, Bangongtso, Linggatso, Guanyong Lake, Tanggula Lake, Gosainkunda Lake, Gokyo Lake and Phewa Lake, and 1 ice core data .The resolution of ice core data is 1 year, lake core data is 2~20 years, and the data include mercury concentration and flux.
KANG Shichang
Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of 1.5 m temperature, 1.5 m humidity, 2 m wind speed, 2 m wind orientation, surface temperature, etc. Data from the automated weather station was collected using USB equipment at 19:10 on August 6, 2019, with a recording interval of 10 minutes, and data was downloaded on December 20, 2020. There is no missing data but a problem with the wind speed data after 9:30 on July 14, 2020 (most likely due to damage to the wind vane). Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The records include 1.5 meters of temperature, 1.5 meters of humidity, 2 meters of wind speed, 2 meters of wind direction, surface temperature, etc. The initial recording time is 15:00 on August 9, 2019, and the recording interval is 1 minute. The power supply is mainly maintained by batteries and solar panels. The automatic weather station has no internal storage. The data is uploaded to the Hobo website via GPRS every hour and downloaded regularly. At 23:34 on January 5, 2020, the 1.5 meter temperature and humidity sensor was abnormal, and the temperature and humidity data were lost. The data acquisition instrument will be retrieved on December 19, 2020 and downloaded to 19:43 on June 23, 2020 and 3:36 on September 25, 2020. Then the temperature and humidity sensors were replaced, and the observations resumed at 12:27 on December 21. The current data consists of three segments (2019.8.9-2020.6.30; 2020.6.23-2020.9.25; 2020.12.19-2020.12.29), Some data are missing after inspection. Some data are duplicated in time due to recording battery voltage, which needs to be checked. The meteorological observation data at the front end of Jiagang mountain glacier are collected by the automatic weather station Hobo rx3004-00-01 of onset company. The model of temperature and humidity probe is s-thb-m002, the model of wind speed and direction sensor is s-wset-b, and the model of ground temperature sensor is s-tmb-m006. The meteorological observation data at the front end of Jianyong glacier are collected by the US onset Hobo u21-usb automatic weather station. The temperature and humidity probe model is s-thb-m002, the wind speed and direction sensor model is s-wset-b, and the ground temperature sensor model is s-tmb-m006.
ZHANG Dongqi
The data set includes annual mass balance of Naimona’nyi glacier (northern branch) from 2008 to 2018, daily meteorological data at two automatic meteorological stations (AWSs) near the glacier from 2011 to 2018 and monthly air temperature and relative humidity on the glacier from 2018 to 2019. In the end of September or early October for each year , the stake heights and snow-pit features (snow layer density and stratigraphy) are manually measured to derive the annual point mass balance. Then the glacier-wide mass balance was then calculated (Please to see the reference). Two automatic weather stations (AWSs, Campbell company) were installed near the Naimona’nyi Glacier. AWS1, at 5543 m a. s.l., recorded meteorological variables from October 2011 at half hourly resolution, including air temperature (℃), relative humidity (%), and downward shortwave radiation (W m-2) . AWS2 was installed at 5950 m a.s.l. in October 2010 at hourly resolution and recorded wind speed (m/s), air pressure (hPa), precipitation (mm). Data quality: the quality of the original data is better, less missing. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. Two probes (Hobo MX2301) which record air temperature and relative humidity was installed on the glacier at half hour resolution since October 2018. The observed meteorological data was calculated as monthly values. The data is stored in Excel file. It can be used by researchers for studying the changes in climate, hydrology, glaciers, etc.
ZHAO Huabiao
The data are collected from the automatic weather station (AWS, Campbell company) in the moraine area of the 24K glacier in the Southeast Tibet Plateau, Chinese Academy of Sciences. The geographic coordinates are 29.765 ° n, 95.712 ° E and 3950 m above sea level. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), net radiation (w / m2), water vapor pressure (kPa) and air pressure (mbar). In the original data, an average value was recorded every 30 minutes before October 2018, and then an average value was recorded every 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The net radiation probe is nr01, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the data has undergone strict quality control. The original abnormal data of 10 minutes and 30 minutes are removed first, and then the arithmetic mean of each hour is calculated. Finally, the daily value is calculated. If the number of hourly data is less than 24, the data is removed, and the corresponding date data in the data table is empty. In addition to the lack of some parameter data due to the thick snow and low temperature in winter and spring, the data can be used by scientific researchers who study climate, glacier and hydrology through strict quality control.
Luo Lun
The data set contains the stable oxygen isotope data of ice core from 1864 to 2006. The ice core was obtained from Noijinkansang glacier in the south of Southern Tibetan Plateau, with a length of 55.1 meters. Oxygen isotopes were measured using a MAT-253 mass spectrometer (with an analytical precision of 0.05 ‰) at the Key Laboratory of CAS for Tibetan Environment and Land Surface Processes, China. Data collection location: Noijinkansang glacier (90.2 ° e, 29.04 ° n, altitude: 5950 m)
GAO Jing
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).
WANG Lei
This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.
WANG Lei
This data set contains oxygen isotope data from 1010 to 2005. It is used to study environmental changes in the Xixiabangma area of the Tibetan Plateau. The ice core oxygen isotope is measured by instrument. This data set is obtained from laboratory measurements. The data are obtained immediately after the completion of the instrument or experiment. The samples and data are collected in strict accordance with relevant operating procedures at all stages and comply with the laboratory operating standards. This data contains two fields: Field 1: The time AD. Field 2: The oxygen isotope ‰.
TIAN Lide
This data set includes the temperature, precipitation, relative humidity, wind speed, wind direction and other daily values in the observation point of Kunsha Glacier. The data is observed from October 3, 2015 to September 19, 2017. It is measured by automatic meteorological station (Onset Company) and a piece of data is recorded every 2 hours. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.
ZHANG Yinsheng
The data include three data sets of Namcu and Muztagh Ata: an atmospheric aerosol data set of monthly average values of TSP, lithium, sodium and other elements; an atmospheric precipitation chemical data set of monthly average values of soluble sodium ions, potassium ions, magnesium ions, calcium ions and other ions; and a data set of chemical compositions of snow ice in the Zhadang Glacier of Namcu Basin of the concentrations of soluble sodium ions, potassium ions, magnesium ions, calcium ions and other ions in snow pits collected in different months. The data can be used in conducting located observations of atmospheric aerosol element content, precipitation chemistry, and glacier snow ice chemical records in the Namco and Muztagh Ata areas. The samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes of CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentration of soluble anions and cations in the samples. Data collection and processing: 1. The automatic rain gauges were erected in the typical regions of the Tibetan Plateau (the Namco Basin and the Muztagh Ata Peak area) to collect precipitation samples. The precipitation samples were collected using a SYC-2 type rainfall sampler that comprised a collector, rain sensor and gland drive. The sample collector was provided with a rain collection bucket and a dust collection bucket, and the weather condition was sensed by the rain sensor. The rain collection bucket would be opened when it started to rain, and the gland would be pressed onto the dust collection bucket. Meanwhile, the date and the rain start and end times were automatically recorded. When the rain stopped, the gland automatically flipped to the rain collection bucket to complete a rainfall record. The collected samples were placed in 20 mL clean high-density polyethylene plastic bottles and refrigerated in a -20 °C refrigerator. They were frozen during transportation and storage until right before being analyzed, when they would be taken from the refrigerator and thawed at room temperature (20 °C). They were then processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentration of soluble anions and cations in the precipitation. 2. The atmospheric aerosol sampler installed at Namco Station was 4 m above the ground and included a vacuum pump, which was powered by solar panels and batteries. The air flux was recorded by an automatic flow meter, and the instantaneous flow rate was approximately 16.7 L/min. The air flux took the meteorological parameter conversion of the Namco area as the standard volume. A Teflon filter with a diameter of 47 mm and a pore size of 0.4 & mu; m was used. The sample interval was 7 days, and the total sample flow rate of each sample was approximately 120-150 m³. Each sample was individually placed in a disposable filter cartridge and stored at low temperature in a refrigerator. Before and after sampling, the filter was placed in a constant temperature (20 ± 5 °C) and constant humidity (40 & plusmn; 2%) environment for 48 hours and weighed with a 1/10000 electronic balance (AUW220D, Shimadu); the difference between the weights before and after was the weight of the aerosol sample on the filter. The collected samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS by ICP-MS to determine the concentrations of 18 elements. Strict measures were taken during indoor and outdoor operations to prevent possible contamination. 3. A precleaned plastic shovel was used to collect a sample every 5 cm from the lower part of the snow pit (samples were collected every 10 cm in some snow pits). The samples were dissolved at room temperature, placed in 20 mL clean high-density polyethylene plastic bottles and stored in a refrigerator at -20 °C. The samples were frozen during transportation and storage until they were taken out of the refrigerator before the analysis and melted at room temperature. The samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentrations of soluble anions and cations in the samples. Clean clothing, disposable masks and plastic gloves should be worn during the manual collection of glacier snow ice chemical samples to prevent contamination. The data set was processed by forming a continuous sequence of monthly mean values after the raw data were quality controlled. It meets the accuracy of routine monitoring research on precipitation, aerosol, snow and ice records in China and the world and is satisfactory for comparative study with relevant climate change records.
KANG Shichang
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn