Meteorological elements of the dataset include the near-surface land-air exchange parameters, such as downward/upward longwave/shortwave radiation flux, momentum flux, sensible heat flux, latent heat flux, etc. In addition, the vertical distributions of 3-dimensional wind, temperature, humidity, and pressure from the surface to the tropopause are also included. Independent evaluations were conducted for the dataset by comparison between the observational data and the most recent ERA5 reanalysis data. The results demonstrate the accuracy and superiority of this dataset against reanalysis data, which provides great potential for future climate change research.
LI Fei, Ma Shupo, ZHU Jinhuan, ZOU Han , LI Peng , ZHOU Libo
Numerical experiments: The climate model used is the fast air sea coupling model (FAMOUS) jointly developed by the British Meteorological Office and British universities The horizontal resolution of the atmospheric model in the FAMOUS model is 5 ° × 7.5 °, 11 layers in vertical direction; The horizontal resolution of the ocean model is 2.5 ° × 3.75 °, 20 layers in vertical direction The atmosphere and ocean are coupled once a day without flux adjustment The tests included the Middle Paleocene (MP,~60Ma BP, test name flat_60ma_1xCO2_sea_3d_ * * 100yr_mean. nc) and the Late Oligocene (LO,~25Ma BP, test name orog_25ma_1xCO2_sea_3d_ * * 100yr_mean. nc) The sea land distribution data is mainly taken from the global coastline basic data set (abbreviated as Gplates, website: http://www.gplates.org/ )Considering that the initial uplift of Cenozoic terrains such as the Qinghai Tibet Plateau started at about 50~55 Ma (Searle et al., 1987), the global terrain height was set to 0 in the MP test to omit the role of plateau terrain. At 25 Ma, Greenland (Zachos et al., 2001) and the Qinghai Tibet Plateau (for example, Wang et al., 2014; Ding et al., 2014; Rowley and Currie, 2006; DeCells et al., 2007; Polisar et al., 2009) were revised The change of ancient latitude is also considered when reconstructing the ancient topography of the Qinghai Tibet Plateau (Besse et al., 1984; Chatterjee et al., 2013; Wei et al., 2013) At the same time, referring to the change of Cenozoic atmospheric CO2 (Beerling and Royer, 2011), the atmospheric CO2 concentration in the two periods of experiments was 280 ppmv (1 ppmv=1 mg L – 1) before the industrial revolution For simplicity, all land vegetation and soil properties are set to globally uniform values, that is, various land surface properties on each land grid point except Antarctica are assigned to the global average value of non glacial land surface before the industrial revolution, which is also convenient for highlighting the impact of land sea distribution and topographic changes In addition, since we mainly discuss the average climate state and its change in the characteristic geological period on the scale of millions of years, we can omit the influence of orbital forcing, that is, the Earth's orbital parameters are set to their modern values in all experiments Output time: All tests were integrated for 1000 years, using the average results of the last 100 years of each test. This data is helpful to explore the formation and evolution mechanism of the Cenozoic monsoon and drought.
LIU Xiaodong
This data set is the conventional meteorological observation data of Maqu grassland observation site in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity, air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH;3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The meterological data during September 17 and November 7 and TCAV data after November 7 were wrong because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2018. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data were missing during Jan. 23 to Jan. 24 because of collector failure; the data during Mar. 17 and May 24 were wrong because of the tower body tilt; The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.
PAN Xiaoduo
This is the meteorological observation data of Selincuo Lake Camp. It includes the radiosonde data, turbulent flux, radiation observation data, general meteorologrical elements near the surface layer and others. The radiosonde data is observed separately at 14:00 and 18:00 July 2, at 8:00, 12:00, 16:00 and 20:00 July 3, at 8:00, 12:00, 16:00, 20:00, and 23:00 July 4, at 6:00 July 5, 2017. The observation time of turbulent flux and radiation observation data is from 17:30 June 29 to 10:00 July 6, 2017. The observation time of general meteorologrical elements near the surface layer is from 18:30 June 29 to 10:10 July 6, 2017. The wind lidar observation time is from 2:24 June 30 to 3:49 July 6, 2017. The data is stored as an excel file.
HAN Yizhe, MA Weiqiang*
This data set includes the observation data of 25 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River from January 2015 to December 2015. 4cm and 20cm soil moisture / temperature is the basic observation of each node; some nodes also include 10cm soil moisture / temperature, surface infrared radiation temperature, snow depth and precipitation observation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification. For details, please refer to "2015 data document 20160501. Docx of water net of Babao River in the upper reaches of Heihe River"
KANG Jian, LI Xin, MA Mingguo
This data set includes the observation data of 40 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River since the end of June 2013. Soil moisture of 4cm, 10cm and 20cm is the basic observation of each node; 19 nodes include the observation of soil moisture and surface infrared radiation temperature; 11 nodes include the observation of soil moisture, surface infrared radiation temperature, snow depth and precipitation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification.
KANG Jian, LI Xin, MA Mingguo
The dataset of automatic meteorological observations was obtained at the Dayekou Guantan forest station (E100°15′/N38°32′, 2835m), south of Zhangye city, Gansu province, from Oct. 1, 2007 to Dec. 31, 2009. Guantan forest station was dominated by the 15-20m high spruce and the surface was covered by 10cm deep moss. All the vegetation was in good condition. Observation items were the multilayer (2m and 10m) wind speed and direction, the air temperature and moisture, rain and snow gauges, snow depth, photosynthetically active radiation, four components of radiation from two layers (, 1.68m and 19.75 m), stem sap flow, the surface temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm),soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm) and soil heat flux (5cm & 15cm). As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
This data set includes the observation data of 40 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River since January 2014. Soil moisture of 4cm, 10cm and 20cm is the basic observation of each node; 19 nodes include the observation of soil moisture and surface infrared radiation temperature; 11 nodes include the observation of soil moisture, surface infrared radiation temperature, snow depth and precipitation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification. Please refer to "waternet data document 20141206. Docx" for details
KANG Jian, LI Xin, MA Mingguo
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Biandukou foci experimental area from 11:10-13:30 on Mar. 17, 2008. Those provide reliable ground data for objects modelling and background modelling, remote sensing image simulation and scaling. Simultaneous with the satellite overpass, numerous ground data were collected, spectrum (ASD Fieldspec FRTM (Boulder, Co, USA), 350nm-2500nm, 3nm for the visible near-infrared band and 10nm for the shortwave infrared band), the surface temperature, atmospheric parameters, the soil profile gravimetric moisture (0-1cm, 1-3cm and 3-5cm), the shallow layer frost depth and the soil roughness in C1, G1, W1, W2, B1 and B2, mostly the grassland, the wheat stubble land, the deep plowed land and the rape stubble land. The quadrates of 90m×90m and 450m×450m were compartmentalized into 81 subgrids of 10m×10m and 50m×50m. Based on the resolution of 30m×30m and 150m×150m, the influence of adjacent eight pixels on the center pixel was studied. Section lines of each subgrid were adopted to acquire the pixel spectrum, which were measured more than once for the mean value. The spectrum data were archived in the ASCII format, with the first five rows as the file header and the following two columns as wavelength (nm) and reflectance (percentage) respectively. The .txt file was not reflectance but intermediate file for further calculation. Raw data were binary files direct from ASD (by ViewSpecPro). The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the cover type was also recorded. The data can be opened by Microsoft Office. Atmospheric parameters were measured by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S. Those provide reliable data for atmosphere correction of the same period in this area. The gravimetric soil moisture (samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Nine data files were included, TM data, CE318 data, B1, B2, C1, G1, W1 and W2.
CHANG Sheng, CHANG Yan, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dateset of TIR (Patent No.: ZL 02 2 37640.2) emissivity measurements was obtained in No. 3 quadrate of the A'rou foci experimental area on Mar. 14, 2008. The observation site was covered with dry pasture with height less than 5cm, in which the center point of each grid was measured twice and was named in the form of A3-9 (number 9 point in No. 3 quadrate of A'rou). Each measurement was carried out at 45° and followed strictly the order: Tsky, Tcha, Tsm and Tcm. Meanwhile, the surface temperature was also acquired by the handheld infrared thermometer and the thermal imager (FLIR ThermaCAM). [emissivity=1- (Tcm^4 – Tsm^4)/ (Tcha^4 – Tsky^4)]. Those provide reliable data for retrieval and study of the surface temperature, and energy and radiation balance.
CAO Yongpan, GU Juan, LI Hua
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Linze grassland and Linze station foci experimental area on Sep. 23, 2007 during the pre-observation periods, and one scene was captured well. These data can provide reliable ground data for retrieval and validation of land surface temperatures with EO-1 Hyperion remote sensing approaches. Observation items included: (1) the land surface radiative temperature by the hand-held infrared thermometer, which was calibrated; (2) GPS by GARMIN GPS 76; (3) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. These data include the raw data in .k7 format and can be opened by ASTPWin software. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel contain optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) ground-based land surface temperature measurements by the thermal imager in the Heihe gobi, west of Zhangye city.
CHE Tao, BAI Yunjie, DING Songchuang, GAO Song, HAN Xujun, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe, LIANG Ji, PAN Xiaoduo, QIN Chun, RAN Youhua, WANG Xufeng, WU Yueru, YAN Qiaodi, ZHANG Lingmei, FANG Li, LI Hua, Liu Qiang, Wen Jianguang, MA Hongwei, YAN Yeqing, YUAN Xiaolong
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn