Numerical experiments: The climate model used is the fast air sea coupling model (FAMOUS) jointly developed by the British Meteorological Office and British universities The horizontal resolution of the atmospheric model in the FAMOUS model is 5 ° × 7.5 °, 11 layers in vertical direction; The horizontal resolution of the ocean model is 2.5 ° × 3.75 °, 20 layers in vertical direction The atmosphere and ocean are coupled once a day without flux adjustment The tests included the Middle Paleocene (MP,~60Ma BP, test name flat_60ma_1xCO2_sea_3d_ * * 100yr_mean. nc) and the Late Oligocene (LO,~25Ma BP, test name orog_25ma_1xCO2_sea_3d_ * * 100yr_mean. nc) The sea land distribution data is mainly taken from the global coastline basic data set (abbreviated as Gplates, website: http://www.gplates.org/ )Considering that the initial uplift of Cenozoic terrains such as the Qinghai Tibet Plateau started at about 50~55 Ma (Searle et al., 1987), the global terrain height was set to 0 in the MP test to omit the role of plateau terrain. At 25 Ma, Greenland (Zachos et al., 2001) and the Qinghai Tibet Plateau (for example, Wang et al., 2014; Ding et al., 2014; Rowley and Currie, 2006; DeCells et al., 2007; Polisar et al., 2009) were revised The change of ancient latitude is also considered when reconstructing the ancient topography of the Qinghai Tibet Plateau (Besse et al., 1984; Chatterjee et al., 2013; Wei et al., 2013) At the same time, referring to the change of Cenozoic atmospheric CO2 (Beerling and Royer, 2011), the atmospheric CO2 concentration in the two periods of experiments was 280 ppmv (1 ppmv=1 mg L – 1) before the industrial revolution For simplicity, all land vegetation and soil properties are set to globally uniform values, that is, various land surface properties on each land grid point except Antarctica are assigned to the global average value of non glacial land surface before the industrial revolution, which is also convenient for highlighting the impact of land sea distribution and topographic changes In addition, since we mainly discuss the average climate state and its change in the characteristic geological period on the scale of millions of years, we can omit the influence of orbital forcing, that is, the Earth's orbital parameters are set to their modern values in all experiments Output time: All tests were integrated for 1000 years, using the average results of the last 100 years of each test. This data is helpful to explore the formation and evolution mechanism of the Cenozoic monsoon and drought.
LIU Xiaodong
Atmospheric water vapor is an important parameter for studying the water cycle. In the context of global warming, in order to better study the impact of atmospheric water vapor on the water cycle, a global daily scale AMSR-E/AMSR2 all-weather atmospheric precipitable water (TPW) dataset with a spatial resolution of 0.25 ° was constructed. In the data set, the TPW over land is mainly obtained by our newly developed 18.7 and 23.8 GHz brightness temperature data inversion algorithm based on AMSR-E and AMSR2; The ocean sky TPW data integrates AMSR-E/AMSR2 official TPW products. As a post-processing, in order to eliminate the systematic deviation between AMSR-E TPW and AMSR2 TPW, using AIRX2RET TPW as the benchmark, the histogram matching method was used to correct the systematic deviation of AMSR-E and AMSR2 TPW data on a global scale, to ensure the continuity of the data, and finally the global daily scale AMSR-E and AMSR2 TPW all-weather data sets were obtained. Among them, the time range of AMSR-E data is from July 8, 2002 to September 27, 2011, and the time range of AMSR-2 data is from January 1, 2013 to August 31, 2017. Each date contains two files: orbit raising and orbit lowering. The data format is Geotiff. The number of data layers is 2. The first layer is TPW data, with the unit of mm. The second layer is time information, which represents the number of seconds elapsed between the pixel observation time with UTC as the time base and 0:00:00 of the current day. The data set has reliable quality. Through verification and analysis with the global SuomiNET GPS TPW, the root mean square error of the data set is 3.5-5.2mm. As atmospheric precipitable water is an important geophysical parameter affecting surface remote sensing and also has an important impact on the earth's climate change, this data can be used for research on the impact of atmospheric water vapor on the water cycle, the assessment of atmospheric water resources and atmospheric correction in the context of climate warming.
JI Dabin, SHI Jiancheng, HUSI Letu, LI Wei , ZHANG Hongxing , SHANG Huazhe
The reconstruction of sunshine hours can better reflect the long-term change trend of surface solar radiation, but only the station data. Therefore, in order to obtain high-resolution grid point data and ensure its accuracy in long-term changes, it is necessary to fuse a variety of surface solar radiation related data. Using the geographic weighted regression (GWR) method, the MODIS 0.1 ° resolution cloud and aerosol retrieval and the surface sunshine hours are combined to reconstruct the surface solar radiation station data. By adding the combination judgment of adjacent point schemes, the accuracy of downscaling results of geographical weighted regression is effectively improved, and the multi-year average value and long-term trend of China are basically consistent with the observation and satellite remote sensing inversion results. Using geographic weighted regression and other methods, the surface wind speed and relative humidity data of 0.1 degree grid are generated; The improved Penman formula is used to calculate the land surface evapotranspiration data.
WANG Kaicun
The evapotranspiration (ET) is an important variable connecting land energy balance, water cycle and carbon cycle. Accurate monitoring and estimations of ET are essential not only for water resources management but also for simulating regional, global climate, and hydrological cycles. Remote sensing technology is an effective method to monitor ET. At present, a variety of ET remote sensing products have been produced and released. However, in the process of validation, there is a problem of spatial scale mismatch between ET remote sensing estimation value and station observation value, especially on heterogeneous surface. Therefore, it is very important to obtain the ground truth ET values at the satellite pixel scale by upscaling method on heterogeneous surface. In this study, using the station observation data and multi-source remote sensing information, the ET observed at a single ground station is upscaled to the satellite pixel scale, and the ground truth ET values at the satellite pixel scale in Heihe River Basin is obtained. Based on the ET data observed by the eddy covariance (EC) at 15 stations (3 superstations and 12 ordinary stations) in the Heihe integrated observatory network, combined with the fused high-resolution remote sensing data (surface temperature, vegetation index, net radiation, etc.) and atmospheric reanalysis data, the upscaling is carried out to obtain the ground truth ET at the satellite pixel scale. The distribution diagram is shown in Figure 1. Specifically, firstly, the spatial heterogeneity of the spatial heterogeneity of the land surface hydrothermal conditions was evaluated; Secondly, nine upscaling methods (the integrated Priestley-Taylor equation method, the Penman-Monteith equation combined with EnKF method, the Penman-Monteith equation combined with SCE_UA method, EC observation value, artificial neural network, Bayesian linear regression, deep belief network, Gaussian process regression, and random fores and directly taking the EC observation value as the ground truth ET) were compared and analyzed through direct validation and cross-validation; Finally, a comprehensive method (directly using the EC observation value on the homogeneous underlying surface; using the Gaussian process regression method for upscaling on the moderately heterogeneous underlying surface and highly heterogeneous underlying surface) was optimized to obtain the groud truth ET at the satellite pixel scale at 15 typical underlying surfaces in Heihe River Basin (2010-2016, spatial resolution of 1km). The results showed that the ground truth ET at the satellite pixel scale is relatively reliable. Compared with the pixel scale reference value (LAS observation value), the MAPE of the ground turth ET at the satellite pixel scale at the three superstations are 1.57%, 3.23% and 4.59% respectively, which can meet the needs of the validation of ET remote sensing products. For all site information and data processing, please refer to Liu et al. (2018), and for upscaling methods, please refer to Li et al. (2021).
LIU Shaomin, LI Xiang , XU Ziwei
As the “water tower of Asia”, the Tibetan Plateau has a profound impact on the global natural environment and climate change. Therefore, analyzing the distribution characteristics of troposphere-stratospheric water vapor over the Qinghai-Tibet Plateau is an important part of understanding the water vapor source and change characterize. In situ observations are limit in this region, and the water vapor sounding data set is needed. Therefore, we carried out balloon-borne measurements at Lhasa and Kunming over the Qinghai-Tibet Plateau, and then obtained the vertical distribution of water vapor in the troposphere and lower stratosphere over the Qinghai-Tibet Plateau. The dataset is named “Pan-Third Pole Water Vapor Sounding”, which is mainly the water vapor profile data obtained by balloon sounding conducted at Lhasa and Kunming in August from July 2009 to 2019. Altitude (Altitude), Water vapor (H2O), temperature (Temp), potential temperature (K), and air pressure (Press) from near the surface to 20 km are obtained by conventional balloons soundings payloaded with the Cryogenic Frost Point Hygrometer (CFH) and radiosonde (iMet). Data is transmitted in real time to the ground receiving station via a radiosonde.
BIAN Jianchun
This data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation test carried out on the South and north slopes of Qilian Mountains during 2020. The air observation is mainly conducted by the king aircraft in the air. The ground investigation includes automatic weather station, raindrop spectrometer, microwave radiometer, Cloud Radar, sounding second data, etc. The observation elements of automatic weather station include air temperature, air pressure, humidity Wind direction, wind speed, precipitation. The observation elements of raindrop spectrometer include particle spectrum, precipitation intensity, etc. The observation elements of microwave radiometer are atmospheric temperature and humidity profiles. The observation elements of cloud Radar are mainly fixed-point vertical observation data. Meanwhile aerosol, rain, hail and soil samples are collected. It can provide data support for revealing the influence of westerly monsoon on cloud precipitation process and atmospheric water cycle in Qilian Mountains.
FU Danhong
1. The data content includes: year, month, day, hour, longitude, latitude, altitude, meridional (UQ) and latitudinal (VQ) components of water vapor flux; 2. Data source and processing method: GPS meteorological sounding data of voyages in the eastern Indian Ocean, and calculate water vapor flux through relative humidity, wind field, air pressure and altitude; 3. Data quality description: vertical continuous observation with 1 second vertical resolution; 4. Data application achievements and prospects: Study on the changes of water vapor transport in the tropical Indian Ocean;
WANG Dongxiao
1) Data content: species list and distribution data of Phrynocephalus and Eremais in Tarim Basin, including class, order, family, genus, species, and detailed distribution information including country, province, city and county; 2) Data source and processing method: Based on the field survey of amphibians and reptiles in Tarim Basin from 2008 to 2020, and recording the species composition and distribution range of Phrynocephalus and Eremias in this area; 3) Data quality description: the investigation, collection and identification of samples are all conducted by professionals, and the collection of samples information are checked to ensure the quality of distribution data; 4) Data application results and prospects: Through comprehensive analysis of the dataset, the list of species diversity and distribution can provide important data for biodiversity cataloguing in arid central Asia, and provide scientific basis for assessing biodiversity pattern and formulating conservation strategies.
PANG Hongxi
In April 2014 and may 2016, 21 Lakes (7 non thermal lakes and 14 thermal lakes) were collected in the source area of the Yellow River (along the Yellow River) respectively. The abundance of hydrogen and oxygen allogens was measured by Delta V advantage dual inlet / hdevice system in inno tech Alberta laboratory in Victoria, Canada. The isotope abundance was expressed in the form of δ (‰) (relative to the average seawater abundance in Vienna) )Test error: δ 18O: 0.1 ‰, δ D: 1 ‰. The data also includes Lake area and lake basin area extracted from Landsat 2017 image data in Google Earth engine.
WAN Chengwei
To describing the quantity of atmospheric water resource gaining over the TP, we provide two indexs based on ERA5 monthly reanalysis. One is called column water income (CWI), defined as the sum of vertical integrated divergence of water vapor flux and surface evaporation. It is 0.25 ×0.25 gridded with unit of kg/m2 or millimeter. Another one is Atmospheric water tower index (AWTI), total of net income of atmospheric water resource for the entire TP area, i.e., and unit is Gt.
YAN Hongru
The land-sea thermal contrast is an important driver for monsoon interannual and interdecadal variability and the monsoon onset. The importance of the thermal contrast between the Tibetan Plateau (TP) and the Indian Ocean (IO) in driving the establishment of Indian Summer Monsoon (ISM) has been recognized. The South Asian Summer Monsoon (SASM) is primarily a tropical summer monsoon. As a direct dynamic response to the diabatic heating, the difference between upper and lower-layer winds can be closely linked to the strength of the heat source. The upper-layer thermal contrast is more important for the SASM (Sun et al., 2010; Sun and Ding,2011; Dai et al., 2013). Thermal contrast between the TP and the IO at the mid-upper troposphere is closely related to the onset and the variability of ISM. Considering that the temperature above the TP and IO are the two centers which are most sensitive to the change of ISM, a thermal contrast index (TCI) is proposed based on 500-200hPa air temperature: TCI = Nor[T(25°N-38°N, 65°E-95°E) - T(5°S-8°N, 65°E-95°E)] Where Nor represents standardization and T is 500-200hPa air temperature. The TCI is larger, and the ISM is stronger. The TCI can capture the interannual and interdecadal variability of ISM well. The cooperative thermal effect between TP and IO may contributes more to the ISM than the separately temperature of TP or IO. In addition, from the view of climate mean state, the pentad-by-pentad increment of TCI has a 15-pentad lead when the correlation coefficient between it and the ISM index reaches the maximum. And the correlation coefficient between the pentad-by-pentad increment of TCI and the ISM index is significant when the pentad-by-pentad increment of TCI has a 3-pentad lead. The result indicates the advantage of the TCI for prediction of the ISM. Meanwhile, the averaged pentad-by-pentad increment of TCI for the first 25 (TCI25) pentads may be a predictor of the early or late onset of the ISM. The ISM onset will be earlier when the TCI25 is larger.
LI Zhangqun, XIAO Ziniu, ZHAO Liang
This dataset (version 1.5) is derived from the complementary-relationship method, with inputs of CMFD downward short- and long-wave radiation, air temperature, air pressure, GLASS albedo and broadband longwave emissivity, ERA5-land land surface temperature and humidity, and NCEP diffuse skylight ratio, etc. This dataset covers the period of 1982-2017, and the spatial coverage is Chinese land area. This dataset would be helpful for long-term hydrological cycle and climate change research. Land surface actual evapotranspiration (Ea),unit: mm month-1. The spatial resolution is 0.1-degree; The temporal resolution is monthly; The data type is NetCDF; This evapotranspiration dataset is only for land surface.
MA Ning, MA Ning, Jozsef Szilagyi, ZHANG Yinsheng, LIU Wenbin
This dataset contains the flux measurements from the Guazhou station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from September 24 to December 31 in 2018. The site (95.673E, 41.405N) was located in a desert in Liuyuan Guazhou, which is near Jiuquan city in Gansu Province. The elevation is 2016 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2011) for data processing) in the Citation section.
ZHANG Renyi
Surface evapotranspiration (ET) is an important variable that connects the land energy balance, water cycle and carbon cycle. The accurate acquisition of ET is helpful to the research of global climate change, crop yield estimation, drought monitoring, and it is of great significance to regional and global water resource planning and management. The methods of obtaining evapotranspiration mainly include ground observation, remote sensing estimation, model simulation and assimilation. The high-precision surface evapotranspiration data can be obtained by ground observation, but the spatial representation of observation stations is very limited; remote sensing estimation, model simulation and assimilation methods can obtain the spatial continuous surface evapotranspiration, but there are problems in the verification of accuracy and the rationality of spatial-temporal distribution pattern. Therefore, this study makes full use of a large number of high-precision station observation data, combined with multi-source remote sensing information, to expand the observation scale of ground stations to the region, to obtain high-precision, spatiotemporal distribution of continuous surface evapotranspiration. Based on the "Heihe River Integrated Remote Sensing joint experiment" (water), "Heihe River Basin Ecological hydrological process integrated remote sensing observation joint experiment" (hiwater), the accumulated station observation data (automatic meteorological station, eddy correlator, large aperture scintillation instrument, etc.), 36 stations (65 station years, distribution map is shown in Figure 1) are selected in combination with multi-source remote sensing data (land cover) Five machine learning methods (regression tree, random forest, artificial neural network, support vector machine, depth belief network) were used to construct different scale expansion models of surface evapotranspiration, and the results showed that: compared with The other four methods, random forest method, are more suitable for the study of the scale expansion of surface evapotranspiration from station to region in Heihe River Basin. Based on the selected random forest scale expansion model, taking remote sensing and air driven data as input, the surface evapotranspiration time-space distribution map (etmap) of Heihe River Basin during the growth season (May to September) from 2012 to 2016 was produced. The results show that the overall accuracy of etmap is good. The RMSE (MAPE) of upstream (las1), midstream (las2-las5) and downstream (las6-las8) are 0.65 mm / day (18.86%), 0.99 mm / day (19.13%) and 0.91 mm / day (22.82%), respectively. In a word, etmap is a high-precision evapotranspiration product in Heihe River Basin, which is based on the observation data of stations and the scale expansion of random forest algorithm. Please refer to Xu et al. (2018) for all station information and scale expansion methods, and Liu et al. (2018) for observation data processing.
LIU Shaomin, XU Tongren
1) Data content : total column water / precipitable water; 2) Data sources and processing methods: ECMWF-interm monthly mean analysis; 3) Data quality description: time resolution: monthly, spatial resolution: 0.7°*0.7°; 4) Data application results and prospects: this data can be used for analysis of water resources in the air.
YAN Hongru
This data set includes the daily values of temperature, pressure, relative humidity, wind speed, wind direction, precipitation, radiation, and water vapor pressure observed from 22 international exchange stations in Sri Lanka from January 1, 2008 to October 1, 2018. The data was downloaded from the NCDC of NOAA. The data set processing method is that the original data is quality-controlled to form a continuous time series. It satisfies the accuracy of the original meteorological observation data of the National Weather Service and the World Meteorological Organization (WMO), and eliminates the systematic error caused by the failure of the tracking data and the sensor. The meteorological site information contained in this dataset is as follows: LATITUDE LONGITUDE ELEVATION  COUNTRY  STATION NAME +09.800  +080.067   +0015.0   SRI LANKA  KANKASANTURAI +09.650  +080.017   +0003.0   SRI LANKA  JAFFNA +09.267  +080.817   +0002.0   SRI LANKA  MULLAITTIVU +08.983  +079.917   +0003.0   SRI LANKA  MANNAR +08.750  +080.500   +0098.0   SRI LANKA  VAVUNIYA +08.539  +081.182   +0001.8   SRI LANKA  CHINA BAY +08.301  +080.428   +0098.8   SRI LANKA  ANURADHAPURA +08.117  +080.467   +0117.0   SRI LANKA  MAHA ILLUPPALLAMA +08.033  +079.833   +0002.0   SRI LANKA  PUTTALAM +07.706  +081.679   +0006.1   SRI LANKA  BATTICALOA +07.467  +080.367   +0116.0   SRI LANKA  KURUNEGALA +07.333  +080.633   +0477.0   SRI LANKA  KANDY +07.181  +079.866   +0008.8   SRI LANKA  BANDARANAIKE INTL COLOMBO +06.900  +079.867   +0007.0   SRI LANKA  COLOMBO +06.822  +079.886   +0006.7   SRI LANKA  COLOMBO RATMALANA +06.967  +080.767   +1880.0   SRI LANKA  NUWARA ELIYA +06.883  +081.833   +0008.0   SRI LANKA  POTTUVIL +06.817  +080.967   +1250.0   SRI LANKA  DIYATALAWA +06.983  +081.050   +0667.0   SRI LANKA  BADULLA +06.683  +080.400   +0088.0   SRI LANKA  RATNAPURA +06.033  +080.217   +0013.0   SRI LANKA  GALLE +06.117  +081.133   +0020.0   SRI LANKA  HAMBANTOTA
DENG Chuangwu
This dataset contains monthly 0.05°×0.05° (1982, 1985, 1990, 1995, and 2000) and 0.01°×0.01° (2005, 2010, 2015 and 2017) LST products in Qilian Mountain Area. The dataset was produced based on SW algorithm by AVHRR BT from thermal infrared channels (CH4: 10.5µm to 11.3µm; CH5: 11.5µm to 12.5µm) at a resolution of 0.05°, MYD21A1 LST products at a resolution of 0.01° along with some auxiliary datasets. The auxiliary datasets include IGBP land cover type, AVHRR NDVI products, Modern Era Retrospective-Analysis for Research and Applications-2 (MERRA-2) reanalysis data, ASTER GED, Lat/Lon and the Julian Day information.
WANG Junbo, SHAO Xuemei
This data set includes daily average data of atmospheric temperature, relative humidity, precipitation, wind speed, wind direction, net radiance, and atmospheric pressure from 1 January 2007 to 31 December 2016 derived from the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set has been used by students and researchers in the fields of meteorology, atmospheric environment and ecological research. The units of the various meteorological elements are as follows: temperature °C; precipitation mm; relative humidity %; wind speed m/s; wind direction °; net radiance W/m2; pressure hPa; and particulate matter with aerodynamic diameter less than 2.5 μm μg/m3. All the data are the daily averages calculated from the raw observations. Observations and data collection were carried out in strict accordance with the instrument operating specifications and the guidelines published in relevant academic journals; data with obvious errors were eliminated during processing, and null values were used to represent the missing data. In 2015, due to issues related to the age of the observation probe at the station, only the wind speed data for the last 8 months were retained.
Luo Lun
This data set includes daily values of temperature, pressure, relative humidity, wind speed, wind direction, precipitation, radiation, water vapour pressure and other elements obtained from the Integrated Observation and Research Station of the Westerly Environment in Muztagh Ata from 18 May 2003 to 31 December 2016. The data are obtained by an automatic meteorological station (Vaisala) that recorded one measurement every 30 minutes. The data set was processed as a continuous time series after the original data were quality controlled. This data set satisfies the accuracy requirements of the meteorological observations of the National Weather Service and the World Meteorological Organization (WMO), and the systematic errors caused by the tracking data and sensor failure have been eliminated. The data set has mainly been applied in the fields of glaciology, climatology, environmental change research, cold zone hydrological process research and frozen soil science. Furthermore, this data set is mainly used by professionals engaged in scientific research and training in atmospheric physics, atmospheric environment, climate, glaciers, frozen soil and other disciplines.
WANG Yuanwei, XU Baiqing
1) The data set is composed of global atmospheric reanalysis data jointly produced by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). These grid data are generated by reanalysing the global meteorological data from 1948 to present by applying observation data, forecasting models and assimilation systems. The data variables include surface, near-surface (.995 sigma layer) and multiple meteorological variables in different barospheres, such as precipitation, temperature, relative humidity, sea level pressure, geopotential height, wind field, heat flux, etc. 2) The coverage time is from 1948 to 2018, and the data from 1948 to 1957 are non-Gaussian grid data. The data cover the whole world. The spatial resolution is a 2.5° latitude by 2.5° longitude grid. The vertical resolution is a 17-layer standard pressure barosphere, with layer boundaries at 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa, and 28 sigma levels. Some variables are calculated for 8 layers (omega) or 12 layers (humidity), with temporal resolutions of 6 hours, daily, monthly or a long-term monthly average (from 1981 to 2010). The daily data are obtained by averaging the daily values of 0Z, 6Z, 12Z and 18Z. 3) Missing values are assigned a value of -9.99691e+36f. The data are stored in the .nc format with the file name var.time.stat.nc, and each file includes data on latitude, longitude, time, and atmospheric variables. For detailed data specifications, please visit http://www.esrl.noaa.gov/pad/data.
National Oceanic and Atmospheric Administration, National Center for Atmospheric Research
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn