The triple pole aerosol type data product is an aerosol type result obtained through a series of data pre-processing, quality control, statistical analysis and comparative analysis processes by comprehensively using MEERA 2 assimilation data and active satellite CALIPSO products. The key of the aerosol type fusion algorithm is to judge the aerosol type of CALIPSO. During the data fusion of aerosol type, the final aerosol type data (12 types in total) and quality control results in the three polar regions are obtained according to the types and quality control of CALIPSO aerosol types and referring to MERRA 2 aerosol types. The data product fully considers the vertical and spatial distribution of aerosols, and has a high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).
ZHAO Chuanfeng
The 0.1 º aerosol optical thickness dataset (also known as the "Poles AOD Collection 1.0" aerosol optical thickness (AOD) dataset) in the polar regions from 2000 to 2020 was produced by combining Merra-2 mode data and MODIS satellite sensor AOD. The data covers the period from 2000 to 2020, with a daily time resolution, covering the "tri polar" (Antarctic, Arctic and Qinghai Tibet Plateau) region, and a spatial resolution of 0.1 degree. The verification of the measured stations shows that the relative deviation of the data is within 35%, which can effectively improve the coverage and accuracy of AOD in the polar region.
GUANG Jie GUANG Jie
The surface PM2.5 concentration data of Tibet Plateau is named by date (YYYYMMDD). Each NC file contains one day's data, which is composed of PM2.5 concentration, longitude, latitude, and time information of the area (the corresponding variables in the data are named with PM2.5, lon, lat, time). The data inversion relies on the reanalysis data MERRA-2 released by NASA and the AOD product of Multi-angle Imaging SpectroRadiometer (MISR). MERRA-2 is mainly based on NASA GMAO Earth system model version 5 (GEOS 5). The algorithm is able to assimilate all the in-situ and re- motely-sensed atmospheric data. This dataset mainly focuses on the aerosol field of MERRA-2. This is the first multi-decadal reanalysis within which meteorological and aerosol observations are jointly assimilated into a global assimilation system. MISR views Earth with cameras pointed in 9 different directions, which can help us know the amount of sunlight that is scattered in different directions under natural conditions. The main data products used in this data algorithm are MERRA-2 aerosol analysis product (M2T1NXAER) and MISR Level 3 version 4 global aerosol products (MIL3DAEN_4). Firstly, the ratio of PM2.5 to AOD in each grid was calculated by using the aerosol information provided by MERRA-2. Second, the PM2.5 concentration of the grid was calculated by multiplying the AOD of MISR by the ratio. The mean prediction error of PM2.5 concentration obtained by this method is within 20 μg/m3. The corresponding PM2.5 products can be used for the assessment of particulate pollution in the Tibet Plateau.
FU Disong
Atmospheric water vapor is an important parameter for studying the water cycle. In the context of global warming, in order to better study the impact of atmospheric water vapor on the water cycle, a global daily scale AMSR-E/AMSR2 all-weather atmospheric precipitable water (TPW) dataset with a spatial resolution of 0.25 ° was constructed. In the data set, the TPW over land is mainly obtained by our newly developed 18.7 and 23.8 GHz brightness temperature data inversion algorithm based on AMSR-E and AMSR2; The ocean sky TPW data integrates AMSR-E/AMSR2 official TPW products. As a post-processing, in order to eliminate the systematic deviation between AMSR-E TPW and AMSR2 TPW, using AIRX2RET TPW as the benchmark, the histogram matching method was used to correct the systematic deviation of AMSR-E and AMSR2 TPW data on a global scale, to ensure the continuity of the data, and finally the global daily scale AMSR-E and AMSR2 TPW all-weather data sets were obtained. Among them, the time range of AMSR-E data is from July 8, 2002 to September 27, 2011, and the time range of AMSR-2 data is from January 1, 2013 to August 31, 2017. Each date contains two files: orbit raising and orbit lowering. The data format is Geotiff. The number of data layers is 2. The first layer is TPW data, with the unit of mm. The second layer is time information, which represents the number of seconds elapsed between the pixel observation time with UTC as the time base and 0:00:00 of the current day. The data set has reliable quality. Through verification and analysis with the global SuomiNET GPS TPW, the root mean square error of the data set is 3.5-5.2mm. As atmospheric precipitable water is an important geophysical parameter affecting surface remote sensing and also has an important impact on the earth's climate change, this data can be used for research on the impact of atmospheric water vapor on the water cycle, the assessment of atmospheric water resources and atmospheric correction in the context of climate warming.
JI Dabin, SHI Jiancheng, HUSI Letu, LI Wei , ZHANG Hongxing , SHANG Huazhe
Clouds cover 70% of the earth's surface and are one of the important factors affecting the balance of atmospheric radiation and climate change. They are also an important part of the global water cycle. Considering the lack of reliable cloud parameter data with high temporal and spatial resolutions in the East Asia-Pacific (EAP) region, the 2016 data were developed using the next-generation geostationary satellite Himawari-8 with a temporal resolution of 1h and spatial resolutions of 0.1° and 0.25°. , 1° cloud parameters datasets. The cloud products include macro- and micro parameters. The macro parameters include: cloud cover (CF), cloud detection (CM), cloud phase detection (CP), cloud top pressure (CTP), cloud top height (CTH) ), cloud top temperature (CTT), cloud type (CT), supercooled water detection (SWC); micro parameters include cloud optical depth (COT), cloud particle effective radius (CER). These cloud parameters produced have reached the international advanced level in terms of precision.
HUSI Letu
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
Aerosol Optical Depth (AOD) reflects the attenuation of solar radiation to the surface by aerosols. The aerosol type is calculated according to the aerosol optical thickness (AOD). This data set is derived from the latest MODIS aerosol secondary product MOD04_ L2 and MYD04_ L2, where MOD and MYD represent Terra and Aqua satellites respectively. At present, MODIS aerosol retrieval algorithms are Dark Target (DT) and Deep Blue (DB). According to the inversion accuracy of the metadata field table Quality Assurance Confidence (QAC), DT and DB algorithm products are integrated to deal with land, ocean and coast respectively. The index quality is optimal (QAF=3) or suboptimal (QAF=2) or meets the basic needs (QAF=1) to obtain high-resolution AOD products (0.1 degree, daily scale) with full coverage and long time series. According to AOD experience threshold (AOD: 0~0.2, clean type; 0.2~0.6, urban or industrial type; greater than 0.6, sand dust type) The aerosol types are classified into three types: clean type (1), urban or industrial type (2) and sand dust type (3). This dataset provides MOD, MYD and fusion products based on transit time.
YE Aizhong
A global continental blended high-resolution planetary boundary layer height (PBLH) dataset is generated with machine learning algorithms, covering a time period from 2017 to 2021 with a 3-hour and 0.25º resolution in space and time. The radiosonde dataset contains around 180 million profiles over 370 stations across the world. The machine learning model was established by taking the parameters derived from ERA5 reanalysis and GLDAS as input while PBLH determined from radiosonde measurements was used as the learning target. Once a start-of-the-art model has been eventually trained, the model was then used to predict PBLHs at other grids across the globe with parameters acuqired or derived from ERA5 and GLDAS, including PBLH, lower tropospheric stability, near-surface wind speed and standard deviation of orography extracted from ERA5 reanalysis, sensible heat flux, latent heat flux, transpiration, evapotranspiration, downward long wave radiation, downward short wave radiation, total precipitation rate and near-surface pressure from GLDAS. Overall, this harmonized high-resolution PBLH dataset is outstanding in terms of both spatiotemporal coverage and good accuracy, as compared to the PBLHs retrieved from radiosonde.
GUO Jianping , ZHANG Jian , SHAO Jia
This data set contains the high-resolution tropospheric nitrogen dioxide vertical column concentration pomino v2.0.1 data in East Asia from 2004 to 2020, which provides an important data basis for studying the spatial distribution characteristics and temporal variation trend of tropospheric nitrogen dioxide in China. Based on the tropospheric nitrogen dioxide slant column concentration provided by KNMI, the pomino tropospheric nitrogen dioxide vertical column concentration is calculated through the tropospheric AMF retrieval algorithm developed by ourselves. The comparison with the ground-based observation data shows that the tropospheric nitrogen dioxide column concentration of pomino can better capture the day-to-day variation trend, and has better correlation with the ground-based observation data. At present, the data has been used for scientific research by many universities and scientific research institutions at home and abroad. In the future, the data set will provide more comprehensive data support for scientific research projects on the Qinghai Tibet Plateau.
LIN Jintai
This data set contains the high-resolution tropospheric nitrogen dioxide vertical column concentration pomino v2.1 data in East Asia from 2012 to 2020. It is a new version of the data after bug fix of v2.0.1, which provides an important data basis for studying the spatial distribution characteristics and temporal change trend of tropospheric nitrogen dioxide in China. Based on the tropospheric nitrogen dioxide slant column concentration provided by KNMI, the pomino tropospheric nitrogen dioxide vertical column concentration is calculated through the tropospheric AMF retrieval algorithm developed by ourselves. The comparison with the ground-based observation data shows that the tropospheric nitrogen dioxide column concentration of pomino can better capture the day-to-day variation trend, and has better correlation with the ground-based observation data. At present, the data has been used for scientific research by many universities and scientific research institutions at home and abroad. In the future, the data set will provide more comprehensive data support for scientific research projects on the Qinghai Tibet Plateau.
LIN Jintai
This dataset contains the monthly/yearly surface shortwave band albedo, fraction of absorbed photosynthetically active radiation (fPAR), leaf area index (LAI), vegetation continuous fields (tree cover and non-tree vegetation cover, VCF), land surface temperature (LST), net radiation (RN), evapotranspiration (ET), aboveground autotrophic respiration (RA-ag), belowground autotrophic respiration (RA-bg), gross primary production (GPP) and net primary production (NPP) in China from 2001 to 2018. The spatial resolution are 0.1 degree. Moreover, the dataset also includes these 11 ecosystem variables under climate-driven scenario (i.e., under no human disturbance). So, it can show the relative influences of climate change and human activities on land ecosystem in China during the 21st century.
CHEN Yongzhe, FENG Xiaoming, TIAN Hanqin, WU Xutong, GAO Zhen, FENG Yu, PIAO Shilong, LV Nan, PAN Naiqing, FU Bojie
Surface solar irradiance (SSI) is one of the products of FY-4A L2 quantitative inversion. It covers a full disk without projection, with a spatial resolution of 4km and a temporal resolution of 15min (there are 40 observation times in the whole day since 20180921, except for the observation of each hour, there is one observation every 3hr before and after the hour), and the spectral range is 0.2µ m~5.0 µ m. The output elements of the product include total irradiance, direct irradiance on horizontal plane and scattered irradiance, the effective measurement ranges between 0-1500 w / m2. The qualitative improvement of FY-4A SSI products in coverage, spatial resolution, time continuity, output elements and other aspects makes it possible to further carry out its fine application in solar energy, agriculture, ecology, transportation and other professional meteorological services. The current research results show that the overall correlation of FY-4A SSI product in China is more than 0.75 compared with ground-based observation, which can be used for solar energy resource assessment in China.
SHEN Yanbo, HU Yueming, HU Xiuqing
Data content: surface temperature data of the Aral Sea basin from 2015 to 2018. Data sources and processing methods: the first band of mod11a2 product was extracted from the NASA medium resolution imaging spectrometer as the surface temperature data, multiplied by the scale factor of 0.02. Data quality: the spatial resolution is 1000m × 1000m, the temporal resolution is 8 days, and the value of each pixel is the average value of land surface temperature in 8 days. Data application results: under the background of climate change, it can be used to analyze the correlation between meteorological elements and vegetation characteristics, and can also be combined with other meteorological data to analyze the regional distribution of a certain vegetation type.
LIU Tie
The global monthly all-sky land surface temperature (2000-2020) is produced by the method from Chen et al. 2017 JHM.
CHEN Xuelong, BOB Su, MA Yaoming
This data set is a national high-resolution solar radiation data set covering 34 years (1983.7-2017.6), with a resolution of 10 km. The data unit is W / m2. The data set is developed by merging the global high-resolution (3 hours, 10 km) surface solar radiation data set (1983-2017) with isccp-hxg cloud products as the main input, with ground based sunshine duration derived surface solar raidation data from 2261 meteorological stations in China by using the geographic weighted regression method. The validation results show that this dataset can provide more accurate simulation of long-term variability of surface solar radiation than that of gewex-srb, cmsaf-clara-a2 and the isccp-hxg based surface solar radiation product. This data can provide favorable data support for the application and research of long-term change of hydrology in land surface process simulation.
FENG Fei, WANG Kaicun
Land surface temperature (LST) is a key variable for high temperature and drought monitoring and climate and ecological environment research. Due to the sparse distribution of ground observation stations, thermal infrared remote sensing technology has become an important means of quickly obtaining ground temperature over large areas. However, there are many missing and low-quality values in satellite-based LST data because clouds cover more than 60% of the global surface every day. This article presents a unique LST dataset with a monthly temporal resolution for China from 2003 to 2017 that makes full use of the advantages of MODIS data and meteorological station data to overcome the defects of cloud influence via a reconstruction model. We specifically describe the reconstruction model, which uses a combination of MODIS daily data, monthly data and meteorological station data to reconstruct the LST in areas with cloud coverage and for grid cells with elevated LST error, and the data performance is then further improved by establishing a regression analysis model. The validation indicates that the new LST dataset is highly consistent with in situ observations. For the six natural subregions with different climatic conditions in China, verification using ground observation data shows that the root mean square error (RMSE) ranges from 1.24 to 1.58 K, the mean absolute error (MAE) varies from 1.23 to 1.37 K and the Pearson coefficient (R2) ranges from 0.93 to 0.99. The new dataset adequately captures the spatiotemporal variations in LST at annual, seasonal and monthly scales. From 2003 to 2017, the overall annual mean LST in China showed a weak increase. Moreover, the positive trend was remarkably unevenly distributed across China. The most significant warming occurred in the central and western areas of the Inner Mongolia Plateau in the Northwest Region, and the average annual temperature change is greater than 0.1K (R>0:71, P<0:05), and a strong negative trend was observed in some parts of the Northeast Region and South China Region. Seasonally, there was significant warming in western China in winter, which was most pronounced in December. The reconstructed dataset exhibits significant improvements and can be used for the spatiotemporal evaluation of LST in high-temperature and drought-monitoring studies. More detail please refer to Zhao et al (2020). doi.org/10.5281/zenodo.3528024
MAO Kebiao
The Land Surface Temperature in China dataset contains land surface temperature data for China (about 9.6 million square kilometers of land) during the period of 2003-2017, in Celsius, in monthly temporal and 5600 m spatial resolution. It is produced by combing MODIS daily data(MOD11C1 and MYD11C1), monthly data(MOD11C3 and MYD11C3) and meteorological station data to reconstruct real LST under cloud coverage in monthly LST images, and then a regression analysis model is constructed to further improve accuracy in six natural subregions with different climatic conditions.
MAO Kebiao
Vulnerability assessment dataset of hectometre level for 34 key nodes assessment the flood risk of key nodes in the Belt and Road under the extreme precipitation events, in order to provide basis for decision-making for the local government department, at the same time before flood disaster early warning, which may take the disaster prevention and mitigation measures for the precious time, reduce people's lives and property damage brought by the flood. Based on the data of GDP, population, land ues, road density and river density in the Belt and Road, this dataset combined with the methods of spatial analysis of ArcGIS, assigning different weights to each indicator and building assessment 34 key nodes under the condition of extreme precipitation in flood vulnerability level, which was divided into 5 levels by using natural break point method, representing no vulnerability, low vulnerability, middle vulnerability, high vulnerability, extreme high vulnerability, respectively.
GE Yong, LI Qiangzi, LI Yi
The pan third pole historical extreme precipitation data set includes 2000-2018 extreme precipitation identification data. One belt, one road, was used to assess the rainfall in the important area along the GPM IMERG Final Run (GPM) daily rainfall. The extreme precipitation threshold of 34 important nodes was evaluated by percentile method. The daily precipitation period was identified by the calculated threshold, and the surface inundation area was produced on the basis of extreme precipitation. The data range mainly includes 34 key nodes of Pan third pole (Vientiane, Alexandria, Yangon, Calcutta, Warsaw, Karachi, yekajerinburg, Chittagong, Djibouti, etc.) The data set can provide the basis for local government decision-making, so as to correctly identify extreme precipitation and reduce the loss of life and property caused by extreme precipitation.
HE Yufeng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn