As the “water tower of Asia”, the Tibetan Plateau has a profound impact on the global natural environment and climate change. Therefore, analyzing the distribution characteristics of troposphere-stratospheric water vapor over the Qinghai-Tibet Plateau is an important part of understanding the water vapor source and change characterize. In situ observations are limit in this region, and the water vapor sounding data set is needed. Therefore, we carried out balloon-borne measurements at Lhasa and Kunming over the Qinghai-Tibet Plateau, and then obtained the vertical distribution of water vapor in the troposphere and lower stratosphere over the Qinghai-Tibet Plateau. The dataset is named “Pan-Third Pole Water Vapor Sounding”, which is mainly the water vapor profile data obtained by balloon sounding conducted at Lhasa and Kunming in August from July 2009 to 2019. Altitude (Altitude), Water vapor (H2O), temperature (Temp), potential temperature (K), and air pressure (Press) from near the surface to 20 km are obtained by conventional balloons soundings payloaded with the Cryogenic Frost Point Hygrometer (CFH) and radiosonde (iMet). Data is transmitted in real time to the ground receiving station via a radiosonde.
BIAN Jianchun
This data set integrates the radiosonde observation data of the stations of Everest, Nyingchi and Namuco in 2014 (the radiosonde observation periods are 08:00, 14:00 and 20:00 in June, August and November) and the Shiquanhe station (the radiosonde observation periods are 02:00, 08:00, 14:00 and 20:00 in May, July and October) in the three-dimensional comprehensive observation test of "Earth atmosphere interaction and climate effect" of the second Tibetan Plateau scientific research in 2019. This data is the gradient observation data composed of potential temperature, specific humidity, wind speed, wind direction and relative height. The data acquisition frequency is 2S and the use time is Beijing. The naming rule of data integrity file is: year + element xlsx。
LI Maoshan, MA Yaoming, HU Zeyong, CHEN Xuelong, SUN Fanglei, MA Weiqiang*
This data is based on the modified radiosonde observation data of 2008 used by Chen et al. 2016, Chen et al. 2011 and Chen et al. 2013. The vertical resolution of the processed atmospheric wind speed, wind direction, temperature, relative humidity and pressure is 20m. The data of three observation stages in 2008 are processed, namely iop1, IOP2 and iop3. Iop1 started from February 25, 2008 to March 19, 2008, IOP2 from May 13, 2008 to June 12, 2008, and iop3 from July 7, 2008 to July 16, 2008.
CHEN Xuelong, MA Yaoming
1) Data content : total column water / precipitable water; 2) Data sources and processing methods: ECMWF-interm monthly mean analysis; 3) Data quality description: time resolution: monthly, spatial resolution: 0.7°*0.7°; 4) Data application results and prospects: this data can be used for analysis of water resources in the air.
YAN Hongru
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn