This dataset includes the concentration and distribution data of poly- and perfluoroalkyl substances (PFAS) in the Yarlung Tsangpo River and three major rivers in Hengduan Mountain region. The samples were collected in 2020 and 2021 from 83 locations in four major rivers, including the Yarlung Tsangpo, Nu, Lancang and Jinsha Rivers. The water samples were prepared by solid phase extraction, purification, concentration steps, and then determined by HPLC (ThermoFisher Scientific, USA) coupled to a TSQ Quantiva triple quadrupole mass spectrometer. The target compounds included 10 perfluorinated carboxylic acids (PFCAs) and 3 perfluorinated sulfonic acids (PFSAs). Specifically, perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA),perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoA) and perfluorotridecanoic acid (PFTrA), perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS). In the process of sample pretreatment, isotope labeled recovery standards were added, and the sample recovery was calculated to be between 53% and 96%. Conventional water quality test parameters include temperature, dissolved oxygen, pH, conductivity, salinity, and dissolved organic carbon. The accuracy of the parameters were 0.1℃, 0.01mg/L, 0.01, 0.1μS/cm, 0.01ppt and 0.01mg/L, respectively. Among them, the dissolved organic carbon was measured by TOC analyzer, and the other water quality parameters were measured by YSI ProPlus portable multi-parameter water quality instrument. This dataset can provide a scientific basis for mapping the spatial distribution of organic pollution over the Tibetan Plateau and assessing the water quality safety of water towers in Asia.
REN Jiao , WANG Xiaoping
1. The data content includes: year, month, day, hour, longitude, latitude, altitude, meridional (UQ) and latitudinal (VQ) components of water vapor flux; 2. Data source and processing method: GPS meteorological sounding data of voyages in the eastern Indian Ocean, and calculate water vapor flux through relative humidity, wind field, air pressure and altitude; 3. Data quality description: vertical continuous observation with 1 second vertical resolution; 4. Data application achievements and prospects: Study on the changes of water vapor transport in the tropical Indian Ocean;
LIU Zhaofei, YAO Zhijun
Lake salinity is an important parameter of lake water environment, an important embodiment of water resources, and an important part of climate change research. This data is based on the measured salinity data of lakes in the Qinghai Tibet Plateau. The salinity is characterized by the practical salinity unit (PSU), which is converted from the specific conductivity (SPC) measured by the conductivity sensor. ArcGIS software was used to convert the measured data into space vector format. SHP format, and the measured salinity spatial distribution data file was obtained. The data can be used as the basic data of lake environment, hydrology, water ecology, water resources and other related research reference.
ZHU Liping
This dataset provides the in-situ lake water parameters of 124 closed lakes with a total lake area of 24,570 km2, occupying 53% of the total lake area of the TP.These in-situ water quality parameters include water temperature, salinity, pH,chlorophyll-a concentration, blue-green algae (BGA) concentration, turbidity, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), and water clarity of Secchi Depth (SD).
ZHU Liping
The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.
DONG Lingxiao
This data set is the water resources data of the Qinghai Tibet Plateau from 1990 to 2010, which is the sum of renewable surface and groundwater resources. The data is in vector format and the spatial resolution is in the scale of prefecture level administrative units. The data is obtained by checking the results of VIC (variable injection capacity) hydrological model. The simulated water resources are the sum of the surface runoff and underground runoff in the output results of hydrological simulation. The simulation results are verified by comparing with the runoff data of the measured stations. According to the statistics of water resources at the provincial level in China water resources bulletin, a correction coefficient α is introduced at the provincial level, so that the product of water resources and α in the hydrological model simulation province is equal to the statistics of water resources. Then the amount of water resources in the administrative unit is the product of the total amount of water resources and α.
DU Yunyan, YI Jiawei
The Tibetan Plateau in China covers six provinces including Tibet, Qinghai, Xinjiang, Yunnan, Gansu and Sichuan, including Tibet and Qinghai, as well as parts of Xinjiang, Yunnan, Gansu and Sichuan. The research on water and soil resources matching aims to reveal the equilibrium and abundance of water resources and land resources in a certain regional scale. The higher the level of consistency between regional water resources and the allocation of cultivated land resources, the higher the matching degree, and the superior the basic conditions of agricultural production. The general agricultural water resource measurement method based on the unit area of cultivated land is used to reflect the quantitative relationship between the water supply of agricultural production in the study area and the spatial suitability of cultivated land resources. The Excel file of the data set contains the generalized agricultural soil and water resource matching coefficient data of the Tibetan Plateau municipal administrative region in China from 2008 to 2015, the vector data is the boundary data of the Tibetan Plateau municipal administrative region in China in 2004, and the raster data pixel value is the generalized agricultural soil and water resource matching coefficient of the year in the region.
DONG Qianjin, DONG Lingxiao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn