To explore inorganic hydrochemical characteristics of the upper Yarlung Zangbo River, water samples were collected from the main stream and different tributaries in this region in August 2020. The water was collected with 100mL polyethylene (PE) plastic bottle, and the basic physical and chemical parameters such as pH value (±0.2) and dissolved oxygen (±1%) of the sampling site were measured by multi -parameter water quality monitor (YSI-EX02,USA).,and HCO3- concentration was titrated with 0.025mol/L HCl.The concentrations of Na+, K+, Ca2+, Mg2+, SO42-, NO3- and Cl- ions were analyzed and determined by ion chromatograph (Shenhan CIC-D160, China) in the laboratory. Using Gibbs model, correlation analysis and principal component analysis method, analyzed the one main ion concentration changes, chemical composition characteristics, analytical, and the ion source was designed to reveal inorganic water chemical characteristics of The Tibet plateau glacier melt water runoff, and for plateau typical river water and changing trend forecast provides the basis.
NIU Fengxia
In order to explore the inorganic hydrochemical characteristics of Naqu basin, river water and groundwater were collected in Naqu basin in September 2020 and September 2021. Collect river water and groundwater with 550ml plastic bottles on site. The main anions and anions (ca2+, na+, mg2+, k+, so42- and cl-) are measured with an ion chromatograph (metrohm ecoic, Switzerland), with a measurement accuracy of 1 μ G/l. Bicarbonate (hco3-) is titrated with acid-base indicator and determined with 50ml acid burette. The purpose is to reveal the inorganic hydrochemical characteristics of water bodies in Naqu basin and provide data support for the analysis of groundwater recharge sources in Naqu basin.
LIU Yaping , CHEN Zhenghao
In the summer of 2020, the water samples from 26 lakes were collected mainly in the southern and eastern Tibetan Plateau. At the same time, the water samples from 3 lakes in the Hoh Xil region were collected from October to November 2020. Put the collected lake water samples into plastic bottles. Some samples are titrated on-site with an alkalinity kit to obtain the concentration of CO32- and HCO3- ions. The rest samples are stored in the refrigerator. After they are brought back to the laboratory, the concentration of main cations K+, Na+, Ca2+, Mg2+ is tested by ICP-OES, and the concentration of HNO -, SO42-, F- and Cl- ions are meastured by anion chromatography.
MENG Xianqiang
The regional water environment data of typical mineral development projects include the water sample detection data set around the typical mineral development area of the super large gold belt in the Qilian Mountain metallogenic belt in the northeast of Qinghai Tibet Plateau (2019), and the sediment and soil sample detection data set around the typical mineral development area of the super large gold belt in the Qilian Mountain metallogenic belt in the northeast of Qinghai Tibet Plateau (2019). The first row of data is longitude and latitude and element name, the second row is element content unit, and the first column is sample point number. The data acquisition method is the water, sediment and soil samples collected in the relevant watersheds around Zaozigou gold mine, Dashui gold mine and Zhongqu tailings pond in Gannan Tibetan Autonomous Prefecture in August 2019. The water samples are detected and analyzed by ICAP sq inductively coupled plasma mass spectrometer and haiguang optical AFS-2202E atomic fluorescence spectrometer of American Thermal Power company, The soil and sediments are detected and analyzed by ieexrf fluorescence spectrometer, mainly analyzing the contents of major elements such as K, Ca and Na and trace elements such as Cr \ Ni \ Cu \ Zn. The data format is xlsx and the data quality is reliable. It can be used to evaluate the comprehensive effect of water environment in typical mineral development areas of super large gold belt in Qilian Mountain metallogenic belt in the northeast of Qinghai Tibet Plateau.
CHENG Hao
Lake salinity is an important parameter of lake water environment, an important embodiment of water resources, and an important part of climate change research. This data is based on the measured salinity data of lakes in the Qinghai Tibet Plateau. The salinity is characterized by the practical salinity unit (PSU), which is converted from the specific conductivity (SPC) measured by the conductivity sensor. ArcGIS software was used to convert the measured data into space vector format. SHP format, and the measured salinity spatial distribution data file was obtained. The data can be used as the basic data of lake environment, hydrology, water ecology, water resources and other related research reference.
ZHU Liping
This dataset provides the in-situ lake water parameters of 124 closed lakes with a total lake area of 24,570 km2, occupying 53% of the total lake area of the TP.These in-situ water quality parameters include water temperature, salinity, pH,chlorophyll-a concentration, blue-green algae (BGA) concentration, turbidity, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), and water clarity of Secchi Depth (SD).
ZHU Liping
1) Data content: the data set mainly includes the typical water quality parameters of some lakes and river sections in Tibet (TN: total nitrogen; TN: total nitrogen); TP: total phosphorus; Cod: chemical oxygen demand; TOC: total organic carbon); 2) Data sources and processing methods: the water samples collected in the field are sealed, shaded, frozen and stored, and sent to the national heavy industry laboratory for indoor experimental analysis and detection within the effective time; 3) Data quality description: the water sample is sealed completely within the storage time, and the shading treatment is good, and the detection is completed by professional laboratory personnel within the effective time; 4) Results and prospects of data application: at present, there are few measured data about lakes in Tibet. Most of the lakes included in this data set are above 4000 meters above sea level. Therefore, this data set has great reference value for the future study of lake water quality in Tibet.
SONG Chunqiao
The data set contains the stable oxygen isotope data of ice core from 1864 to 2006. The ice core was obtained from Noijinkansang glacier in the south of Southern Tibetan Plateau, with a length of 55.1 meters. Oxygen isotopes were measured using a MAT-253 mass spectrometer (with an analytical precision of 0.05 ‰) at the Key Laboratory of CAS for Tibetan Environment and Land Surface Processes, China. Data collection location: Noijinkansang glacier (90.2 ° e, 29.04 ° n, altitude: 5950 m)
GAO Jing
The stable oxygen isotope ratio (δ 18O) in precipitation is a comprehensive tracer of global atmospheric processes. Since the 1990s, efforts have been made to study the isotopic composition of precipitation at more than 20 stations located on the TP of the Tibetan Plateau, which are located at the air mass intersection between westerlies and monsoons. In this paper, we establish a database of monthly precipitation δ 18O over the Tibetan Plateau and use different models to evaluate the climate control of precipitation δ 18O over TP. The spatiotemporal pattern of precipitation δ 18O and its relationship with temperature and precipitation reveal three different domains, which are respectively related to westerly wind (North TP), Indian monsoon (South TP) and their transition.
GAO Jing
This is the water quality data at depth of 2m, 15m, 18m, 28m, and 38m observed in Selincuo Lake from June to July, 2017. The data can be used in many fields, such as the physical and chemical properties of lakes and their climate response and lake environment changes.
WANG Junbo
This data set is the hydrogen and oxygen isotope ratio data of water samples collected in the Selincuo, Gayringco, and Co Ngoin Lake during the Water Source Study in 2017. The water sample collection time is from June 2017 to July 2017. It can be used in Lake Water Cycle, Lake Environmental Changes, Study of Isotopic Geochemistry and other disciplinary areas.
WANG Junbo
This data set contains the daily values of water temperature and water level change in Ranwu Lake in Tibet from May 15, 2009, to December 31, 2016. Observation instrument model: an automatic HOBO water level and temperature logger U20-001-01; acquisition time: 30 minutes. The data were collected automatically. The observations and data collection were performed in strict accordance with the instrument operating specifications, and the data have been published in relevant academic journals. Data with obvious errors were removed, and the missing data were replaced by null values. Data collection location: Ranwu Lake, southeast Tibet Middle lake outlet: longitude: 96°46'16"; latitude: 29°29'28"; elevation: 3928 m. Lower Lake outlet: longitude: 96°38'52"; latitude: 29°28'52"; elevation: 3923 m. Laigu upper Lake: longitude: 94°49'49"; latitude: 29°18'07"; elevation: 4025 m. This data contains fileds as follows: Field 1: Site Number Data type: Alphanumeric characters (50) Field 2: Time Data type: Date type Field 3: Water temperature, °C Data type: Double-precision floating-point format Field 4: Relative water level, cm Data type: Double-precision floating-point format
Luo Lun
Lake water temperature data, including water temperature values at different water depths, were collected in Bangong Co and Dagze Co. Data collection time: Bangong Co: July 30, 2012, to August 20, 2013 Dagze Co: August 18, 2012, to August 29, 2013 Data sampling interval: 1 hour Instruments used for data acquisition: HOBO Water Temperature Pro V2 U22-001 thermometer from ONSET in the USA (https://www.onsetcomp.com/products/data-loggers/u22-001) The data table was processed and quality controlled by a particular person based on the observation record, and the data with obvious errors were removed. The data have been published in relevant academic journals in strict accordance with relevant regulations. These data could be applied in modern lake science, hydrologic model research and other fields. Water depth, unit: m Temperature, unit: Celsius (°C) Data accuracy: ±0.2 °C
WANG Mingda, HOU Juzhi
The observation data set of the Muztagh Ata hydrological station recorded the water level data of Lake Karakuri and Qiaodumake in the Muztag Ata area, and the ice condition and water quality data of Lake Karakuri (e.g., water temperature, pH, dissolved oxygen, redox potential, and conductivity). The ice condition data were manually measured, including observational data from November 30,2013, to March 26, 2016, which recorded the observational data for each week during December to the next March from 2013 to 2015 (the data collection period sometimes would change due to weather and other reasons); water quality parameter was measured using Hydrolab DS5, including measured data on 2013-07-20, 2014-07-15, 2014-08-28, 2014-09-14, 2015-07-11, and 2015-09-18; water level data were automatically measured by HOBO water level collector, and they included daily measurement records of Lake Karakuri from July 1, 2013, to October 13, 2015, and Qiaodumake from June 3,2013, to September 2, 2015. The data were collected digitally and automatically, and the data set was processed by forming a continuous time sequence after quality controlling the raw data. Observation and collection of the data were performed in strict accordance with the instrument operating specifications. Some obvious error data were removed, and missing data were represented by spaces. Qiaodumake water level collection location: E 75°00.149′, N 38°17.375′, 4130 m Lake Karakuri measuring point location: E 75°02.286′, N 38°26.209′, 3650 m Water level data: Time, Water level, unit: cm Ice condition data: Time, Ice thickness, unit: cm Water quality data: Time, Depth, unit: m Temperature, unit: °C PH, unit: pH Redox potential, unit: mV Photon flux density, unit: μmol/(m2 s) Dissolved oxygen, unit: mg/l
XU Baiqing
The data set includes the vertical profile of water quality and the multi-parameter data of surface water quality of Selincho Lake during the investigation of the sources of rivers and lakes from June to July of 2017. The main water quality parameters measured are dissolved oxygen, conductivity, pH, water temperature, etc. YSI EXO2 water quality multi-parameter measuring instrument is calibrated according to lake surface elevation and local pressure before each measurement. The time interval of measurement is set at 0.25s, and the speed of putting in is slow, so he high continuity of data acquisition is guaranteed. The original data obtained include the measured data exposed to air above the water surface, which are eliminated in the later processing.
WANG Junbo
This is the water quality vertical slope data of Selincuo Lake during the River and Lake Source Investigation from June to July in 2017. The main water quality parameter observation data includes dissolved oxygen, electrical conductivity, PH, water temperature and others.
WANG Junbo
These are the water quality vertical slope data of Co Ngoin Lake obtained during the River and Lake Source Investigation from June to July in 2017. The main water quality observation data include dissolved oxygen, electrical conductivity, PH, water temperature and others.
WANG Junbo
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn