The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
The dataset based on synthesized data from 1114 sites across the Tibetan permafrost region which report that paleoclimate is more important than modern climate in shaping current permafrost carbon distribution.A new estimate of modern soil carbon stock to 3m depth on Tibetan permafrost region was derived by machine learning algorithm, including factors such as climate (paleoclimate and modern climate), vegetation, soil (soil thickness and soil physical and chemical properties, etc.) and topography. This dataset shows that ecosystem models clearly underestimated the Tibetan soil carbon stock, due to the absence of paleoclimate effects in the model. Future modelling of soil carbon cycling should include paleoclimate .
DING Jinzhi
This database includes slope, aspect and digital elevation model (DEM) data of Qinghai Tibet Plateau. The data comes from the 30m * 30m resolution numerical elevation model data downloaded from the geospatial data cloud website. Using the surface analysis function of ArcGIS software, the slope and aspect information of the Qinghai Tibet Plateau are extracted. The data has been rechecked and reviewed by many people, and its data integrity, position accuracy and attribute accuracy meet the standards, with excellent and reliable quality. As one of the engineering geological conditions, this data is the basic data for the research on the development law of major engineering disturbance disasters and major natural disasters in the Qinghai Tibet Plateau and the analysis of susceptibility, risk and risk.
QI Shengwen
Based on the distribution locations of the Qinghai toad-headed lizard (Phrynocephalus vlangalii) collected by field investigation and literature investigation, combined with five climate factors from WorldClim database, the current (1960-1990) and future (2061-2080) climate data were input into the trained species distribution model to predict the current and future suitable habitats. The prediction results shows that the lizard will lose a lot of original habitats under the climate change, and the protection measures for the lizard species should focus on the eastern margin of Qinghai-Tibet Plateau, the northern and eastern parts of Qaidam Basin. The model also predicts that after the climate change, new suitable habitats will appear in areas that were not suitable for the Qinghai toad-headed lizard. However, due to the very limited diffusion ability of reptiles (the maximum annual diffusion distance recorded in the literature is less than 500m), the newly emerging suitable habitats may not be used by the Qinghai toad-headed lizard. Meanwhile, based on the physiological, life history, behavior and morphological data of three altitudinal populations of the Qinghai toad-headed lizard collected by field work, and combined with microclimate data, the physiological consequences of climate change on the Qinghai toad-headed lizard in the current suitable distribution area were predicted by using the mechanism niche model. The prediction results of the model show that, whether in the SSP245 or SSP585 climate change scenarios, the activity time of the lizard will increase in most areas (> 93%) of the current suitable distribution area, and the thermal safety threshold will decrease in all places of the current suitable distribution area. The increase of activity time of high-altitude populations is less than that of low-altitude populations, but the decrease of thermal safety threshold is greater than that of low-altitude populations. The results reveal that climate change may have a greater impact on lizard populations in high altitude areas.
ZENG Zhigao
This dataset is derived from the paper: Su, T. et al. (2019). No high tibetan plateau until the Neogene. Science Advances, 5(3), eaav2189. doi:10.1126/sciadv.aav2189 This data contains supplementary material of this article. Researchers discovered well-preserved palm fossil leaves from the Lunpola Basin (32.033°N, 89.767°E), central Tibetan Plateau at a present elevation of 4655 m in 2016. Researchers compared the newly discovered fossil with those present fossil that are most similar, find that there is no similar leaves among present fossil, therefore, researchers proposed the new species <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. Using the climate model, combined with the research of the fossil, researchers rebuilt the paleoelevation of the central Tibetan Plateau, it shows that a high plateau cannot have existed in the core of Tibet in the Paleogene. The data contains the following tables: 1) Table S1. Fossil records of palms around the world. 2) Table S2. Morphological comparisons between fossils from Lunpola Basin and modern palm genera. 3) Table S3. Climate ranges of 12 living genera that show the closest morphological similarity to <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. This dataset also contains the figures in the supplementary material in the article.
SU Tao
This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.
Food and Agriculture Organization of the United Nations(FAO)
The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.
METI, National Aeronautics and Space Administration
The SRTM (Shuttle Radar Topography Mission) data were obtained from the Endeavour space shuttle jointly launched by NASA and NIMA in February 2000. The SRTM system on the Endeavour had been collecting data for 222 hours and 23 minutes. It covered more than 80% of the global land surface from 60° north latitude to 56° south Latitude, including the whole territory of China. The radar image data acquired by the program have been processed for more than two years to form a digital terrain elevation model. The raw data of this data set were downloaded from the SRTM data distribution website (http://srtm.csi.cgiar.org). For the convenience of using the data, based on the framing of STRM data, we use Erdas software to splice and prepare the STMR mosaic of the Tibetan Plateau. The accuracy is 30 meters, and the data are in geoTIFF format. The raw data of this data set was downloaded from the SRTM data distribution website (http://srtm.csi.cgiar.org). The SRTM data provides a file for each latitude and longitude square. There are two kinds of longitude files, which are 1 arc-second and 3 arc-second, denoted SRTM1 and SRTM3, or 30-m and 90-m data. This data set comprises SRTM3 data with a resolution of 90 m, and the version is SRTM V4.1 (GeoTIFF format).
Food and Agriculture Organization of the United Nations(FAO)
This data set is a digital elevation model of the Tibetan Plateau and can be used to assist in analysis and research of basic geographic information for the Tibetan Plateau. The raw data were the Shuttle Radar Topography Mission (SRTM) data, which were provided by Global Land Cover Network (GLCN), and the raw data were framing data , using the WGS84 coordinate system, including latitude and longitude, with a spatial resolution of 3″. After the mosaic processing, the Nodata (null data) generated in the mosaic process were interpolated and filled. After filling, the projection conversion process was performed to generate data as Albers equal area conical projection. After the conversion projection, the spatial resolution of the data was 90 m. Finally, the boundary of the Tibetan Plateau was used for cutting to obtain DEM data. This data table has two fields. Field 1: value Data type: long integer Interpretation: altitude elevation Unit: m Field 2: count Data type: long integer Interpretation: The number of map spots corresponding to the altitude elevation Data accuracy: spatial resolution: 90 m
Food and Agriculture Organization of the United Nations
This data set contains the digital slope aspect distribution and slope aspect degree data of the Tibetan Plateau, which can be used to assist in basic geographic information analysis and research work on the Tibetan Plateau region. The raw data were the Shuttle Radar Topography Mission (SRTM) data provided by Global Land Cover Network (GLCN) using the WGS84 coordinate system, and the raw data were framing data, including latitude and longitude data, with a spatial resolution of 3″. After the mosaic processing, the Nodata (null data) generated in the mosaic process were interpolated and filled, and after filling, a projection conversion process was performed to generate an equal-area conical projection of the data bit Albers, after conversion projection, the spatial resolution was 90 m. Finally, the boundary of the Tibetan Plateau was used for cutting to obtain DEM data. Use the spatial analysis module under ArcMap to calculate the slope aspect and generate the slope aspect map. Pixel data: value Data type: floating point Interpretation: slope degree Dimension: degree Data accuracy: spatial resolution 90 m
GLCN
This data set contains the digital slope distribution and slope degree data of the Tibetan Plateau, which can be used to assist in basic geographic information analysis and research work on the Tibetan Plateau region. The raw data were the Shuttle Radar Topography Mission (SRTM) data provided by Global Land Cover Network (GLCN) using the WGS84 coordinate system, and the raw data were framing data, including latitude and longitude data, with a spatial resolution of 3″. After the mosaic processing, the Nodata (null data) generated in the mosaic process were interpolated and filled, and after filling, a projection conversion process was performed to generate an equal-area conical projection of the data bit Albers, after conversion projection, the spatial resolution was 90 m. Finally, the boundary of the Tibetan Plateau was used for cutting to obtain DEM data. Use the spatial analysis module under ArcMap to calculate the slope aspect and generate the slope map. Field: value Data type: floating point Interpretation: slope degree Dimension: degree Data accuracy: spatial resolution 90 m
Food and Agriculture Organization of the United Nations
The DEMs of the typical glaciers on the Tibetan Plateau were provided by the bistatic InSAR method. The data were collected on November 21, 2013. It covered Puruogangri and west Qilian Mountains with a spatial resolution of 10 meters, and an elevation accuracy of 0.8 m which met the requirements of national 1:10 000 topographic mapping. Considering the characteristics of the bistatic InSAR in terms of imaging geometry and phase unwrapping, based on the TanDEM-X bistatic InSAR data, and adopting the improved SAR interference processing method, the surface DEMs of the two typical glaciers above were generated with high resolution and precision. The data set was in GeoTIFF format, and each typical glacial DEM was stored in a folder. For details of the data, please refer to the Surface DEMs for typical glaciers on the Tibetan Plateau - Data Description.
JIANG Liming
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn