Surface solar irradiance (SSI) is one of the products of FY-4A L2 quantitative inversion. It covers a full disk without projection, with a spatial resolution of 4km and a temporal resolution of 15min (there are 40 observation times in the whole day since 20180921, except for the observation of each hour, there is one observation every 3hr before and after the hour), and the spectral range is 0.2µ m~5.0 µ m. The output elements of the product include total irradiance, direct irradiance on horizontal plane and scattered irradiance, the effective measurement ranges between 0-1500 w / m2. The qualitative improvement of FY-4A SSI products in coverage, spatial resolution, time continuity, output elements and other aspects makes it possible to further carry out its fine application in solar energy, agriculture, ecology, transportation and other professional meteorological services. The current research results show that the overall correlation of FY-4A SSI product in China is more than 0.75 compared with ground-based observation, which can be used for solar energy resource assessment in China.
SHEN Yanbo, HU Yueming, HU Xiuqing
The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.
DONG Lingxiao
The meteorological data set of Beiluhe station mainly includes 7 meteorological elements such as atmospheric temperature, wind speed, wind direction, humidity, atmospheric pressure, solar radiation and daily rainfall of 2m. The monitoring station of the data set is located at 92 ° E, 35 ° N and 4600m above sea level. The terrain of the monitoring site is flat, and the vegetation type is alpine meadow. The measuring sensors are manufactured by Campell company, of which the measurement of high temperature and humidity is transmitted The sensor model is HMP45C, the wind speed and direction sensor model is 05103, the atmospheric pressure measurement sensor model is ptb-210, the solar radiation sensor model is nr01, the rain gauge sensor model is t-200b, the time interval of this data set is 1 day, which is obtained through the calculation of 30 minute data. During the monitoring period, the data is stable and continuous. Through the analysis of meteorological data, we can recognize Beilu river The change of local climate is not only helpful, but also an indispensable index in the study of frozen soil environment and engineering.
CHEN Ji
It includes sunshine hours data of Xining, Haidong, Menyuan, Huangnan, Hainan, Guoluo, Yushu, Haixi and other major areas of Qinghai from 1988 to 2016. The data were derived from the Qinghai Society and Economics Statistical Yearbook and the Qinghai Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbook. The data table recorded the sunshine hours of every month and year in eight regions of Qinghai. Unit: hour This data set is mainly used in geography and socioeconomic research.
Qinghai Provincial Bureau of Statistics
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn