The dataset contains microbial amplicon sequencing data from a total of 269 ice samples collected from 15 glaciers on the Tibetan Plateau from November 2016 to August 2020, including 24K Glacier (24K), Dongkemadi Glacier (DKMD), Dunde Glacier (DD), Jiemayangzong Glacier (JMYZ), Kuoqionggangri Glacier (KQGR), Laigu Glacier (LG), Palung 4 Glacier (PL4), Qiangtang 1 Glacier (QT), Qiangyong Glacier (QY), Quma Glacier (QM), Tanggula Glacier (TGL), Xiagangjiang Glacier (XGJ), Yala Glacier (YA), Zepugou Glacier (ZPG), ZhufengDongrongbu Glacier (ZF). The sampling areas ranged in latitude and longitude from 28.020°N to 38.100°N and 86.28°E to 95.651°E. The 16s rRNA gene was amplified by polymerase chain reaction (PCR) using 515F/907R (or 515F/806R) primers and sequenced with the Illumina Hiseq2500 sequencing platform to obtain raw data. The selected primer sequences were "515F_GTGYCAGCMGCCGCGGTAA; 907R_CCGTCAATTCMTTTRAGTTT" "515F_GTGCCAGCMGCCGCGG; 806R_ GGACTACHVGGGTWTCTAAT". The uploaded data include: sample number, sample description, sampling time, latitude and longitude coordinates, sample type, sequencing target, sequencing fragment, sequencing primer, sequencing platform, data format and other basic information. The sequencing data are stored in sequence file data format forward *.1.fq.gz and reverse *.2.fq.gz compressed files.
LIU Yongqin
Based on long-term series Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products, daily snow cover products without data gaps at 500 m spatial resolution over the Tibetan Plateau from 2002 to 2021 were generated by employing a Hidden Markov Random Field (HMRF) modeling technique. This HMRF framework optimally integrates spectral, spatiotemporal, and environmental information together, which not only fills data gaps caused by frequent clouds, but also improves the accuracy of the original MODIS snow cover products. In particular, this technology incorporates solar radiation as an environmental contextual information to improve the accuracy of snow identification in mountainous areas. Validation with in situ observations and snow cover derived from Landsat-8 OLI images revealed that these new snow cover products achieved an accuracy of 98.31% and 92.44%, respectively. Specifically, the accuracy of the new snow products is higher during the snow transition period and in complex terrains with higher elevations as well as sunny slopes. These gap-free snow cover products effectively improve the spatiotemporal continuity and the low accuracy in complex terrains of the original MODIS snow products, and is thus the basis for the study of climate change and hydrological cycling in the TP.
HUANG Yan , XU Jianghui
The SZIsnow dataset was calculated based on systematic physical fields from the Global Land Data Assimilation System version 2 (GLDAS-2) with the Noah land surface model. This SZIsnow dataset considers different physical water-energy processes, especially snow processes. The evaluation shows the dataset is capable of investigating different types of droughts across different timescales. The assessment also indicates that the dataset has an adequate performance to capture droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is evident over snow-covered areas (e.g., Arctic region) and high-altitude areas (e.g., Tibet Plateau). Moreover, the analysis also implies that SZIsnow dataset is able to well capture the large-scale drought events across the world. This drought dataset has high application potential for monitoring, assessing, and supplying information of drought, and also can serve as a valuable resource for drought studies.
WU Pute, TIAN Lei, ZHANG Baoqing
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
From 2015 to 2020, physicochemical properties of glacial snow and ice of NO.15 glacier (NO.15), 24K glacier (24K), Azha glacier(AZ), Cuopugou glacier(CPG), Demula glacier (DML), Dongrongbu glacier (DRB), Dongkemadi glacier (DKMD), Dunde glacier (DD), Guliya glacier (GLY), Hongqi Lapu glacier (HQLP), Kangxiwa River glacier (KXW), Kangwure glacier (KWR), Kuoqionggangri glacier (KQGR), Langadingri glacier (LADR), Mengdagangri glacier (MDGR), Mugagangqiong glacier (MGGQ), Muji glacier (MJ), Mushtag glacier (MSTG), Namunani glacier (NMNN), Nima glacier (NM), Nujiangyuantou (NJYT), Palung 4 glacier (PL4), Qiangtang No.1 glacier (QT), Qiangyong glacier (QY), Quma glacier (QM), Seqila glacier (SQL), Tanggula longxiazailongba glacier (LXZ), Xiagangjiang glacier (XGJ), Yala glacier (YL), Zepugou glacier (ZPG), Zhuxigou glacier (ZXG) on the Tibetan plateau, including DOC The samples were analyzed by 0.45 µm molecular membranes. Samples were filtered through 0.45 micron molecular membranes and tested using a Shimadzu TOC-L instrument, while ion concentrations were measured by ion chromatography. The unit of the indicator is mg/L. "n.a." means below the detection limit of the instrument, and "\" means missing value. Sheet1 in the table is "Physicochemical properties of glaciers and snow ice on the Tibetan Plateau (2015-2020)", and sheet2 is "Basic information of glaciers".
LIU Yongqin
In this study, an algorithm that combines MODIS Terra and Aqua (500 m) and the Interactive Multisensor Snow and Ice Mapping System (IMS) (4 km) is presented to provide a daily cloud-free snow-cover product (500 m), namely Terra-Aqua-IMS (TAI). The overall accuracy of the new TAI is 92.3% as compared with ground stations in all-sky conditions; this value is significantly higher than the 63.1% of the blended MODIS Terra-Aqua product and the 54.6% and 49% of the original MODIS Terra and Aqua products, respectively. Without the IMS, the daily combination of MODIS Terra-Aqua over the Tibetan Plateau (TP) can only remove limited cloud contamination: 37.3% of the annual mean cloud coverage compared with the 46.6% (MODIS Terra) and 55.1% (MODIS Aqua). The resulting annual mean snow cover over the TP from the daily TAI data is 19.1%, which is similar to the 20.6% obtained from the 8-day MODIS Terra product (MOD10A2) but much larger than the 8.1% from the daily blended MODIS Terra-Aqua product due to the cloud blockage.
ZHANG Guoqing
The continuous snow cover area in time and space is one of key elements to study of land surface energy and water exhange, mountain hydrology, land surface model, numerical weather forecast and climate change. However, the large number of clouds causes data gaps in the snow cover area from optical remote sensing. The MODIS observations of Terra and aqua, FY-2E and FY-2F VISSR are used to obtain fractional snow cover (subpixel snow cover) which is less affected by the cloud, and the snow cover of the remaining cloud pixels is supplemented according to the time series information. Finally the cloudless daily snow fraction is obtained. This data set includes the daily fractional snow cover at 5 km spatial resolution in the Tibetan Plateau and China.
JIANG Lingmei
The dataset was produced based on MODIS data. Parameters and algorithm were revised to be suitable for the land cover type in the Three-River-Source Regions. By using the Markov de-cloud algorithm, SSM/I snow water equivalent data was fused to the result. Finally, high accuracy daily de-cloud snow cover data was produced. The data value is 0(no snow) or 1(snow). The spatial resolution is 500m, the time period is from 2000-2-24 to 2019-12-31. Data format is geotiff, Arcmap or python+GDAL were recommended to open and process the data.
HAO Xiaohua
This dataset was derived from long-term daily snow depth in China based on the boundary of the three-river-source area. The snow depth ranges from 0 to 100 cm, and the temporal coverage is from January 1 1980 to December 31 2020. The spatial and temporal resolutions are 0.25o and daily, respectively. Snow depth was produced from satellite passive microwave remote sensing data which came from three different sensors that are SMMR, SSM/I and SSMI/S. Considering the systematic bias among these sensors, the inter-sensor calibrations were performed to obtain temporal consistent passive microwave remote sensing data. And the long-term daily snow depth in China were produced from this consistent data based on the spectral gradient method.For header file information, refer to the data set header.txt.
DAI Liyun
This dataset is blended by two other sets of data, snow cover dataset based on optical instrument remote sensing with 1km spatial resolution on the Qinghai-Tibet Plateau (1989-2018) produced by National Satellite Meteorological Center, and near-real-time SSM/I-SSMIS 25km EASE-grid daily global ice concentration and snow extent (NISE, 1995-2018) provided by National Snow and Ice Data Center (NSIDC, U.S.A). It covers the time from 1995 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground is covered by snow. The input data sources include daily snow cover products generated by NOAA/AVHRR, MetOp/AVHRR, and alternative to AVHRR taken from TERRA/MODIS corresponding observation, and snow extent information of NISE derived from observation by SSM/I or SSMIS of DMSP satellites. The processing method of data collection is as following: first, taking 1km snow cover product from optical instruments as initial value, and fully trusting its snow and clear sky without snow information; then, under the aid of sea-land template with relatively high resolution, replacing the pixels or grids where is cloud coverage, no decision, or lack of satellite observation, by NISE's effective terrestrial identification results. For some water and land boundaries, there still may be a small amount of cloud coverage or no observation data area that can’t be replaced due to the low spatial resolution of NISE product. Blended daily snow cover product achieves about 91% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
ZHENG Zhaojun, CAO Guangzhen
Snow cover dataset is produced by snow and cloud identification method based on optical instrument observation data, covering the time from 1989 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground under clear sky or transparent thin cloud is covered by snow. The input data sources include AVHRR L1 data of NOAA and MetOp serials of satellites, and L1 data corresponding to AVHRR channels taken from TERRA/MODIS. Decision Tree algorithm (DT) with dynamic thresholds is employed independent of cloud mask and its cloud detection emphasizes on reserving snow, particularly under transparency cirrus. It considers a variety of methods for different situations, such as ice-cloud over the water-cloud, snow in forest and sand, thin snow or melting snow, etc. Besides those, setting dynamic threshold based on land-surface type, DEM and season variation, deleting false snow in low latitude forest covered by heavy aerosol or soot, referring to maximum monthly snowlines and minimum snow surface brightness temperature, and optimizing discrimination program, these techniques all contribute to DT. DT discriminates most snow and cloud under normal circumstances, but underestimates snow on the Qinghai-Tibet Plateau in October. Daily product achieves about 95% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
ZHENG Zhaojun, CHU Duo
The long-time series data set of snow cover area on the qinghai-tibet plateau is derived from the fusion of MODIS 005 version and IMS data set, andThe cloud-free products of daily snow cover area were obtained by using interpolation de-cloud algorithm.The projection is latitude and longitude, the spatial resolution is 0.005 degrees (about 500m), and the time is a long time series from January 1, 2003 to December 31, 2014. Each file is the result of the proportion of snow cover area on that day, and the value is 0-100 (%). It is the ENVI standard file, The naming convention: ims_mts_yyyyddd.tif, where YYYY stands for year and DDD stands for Julian day (001-365/366).Files can be directly used ENVI or ARCMAP software open view. Document description: 200 snow, 100 lake ice, 25 land, 37 sea
HAO Xiaohua
The daily cloudless MODIS Snow area ratio data set (2000-2015) of the Qinghai Tibet Plateau is based on MODIS daily snow product - mod10a1, which is obtained by using a cloud removal algorithm based on cubic spline interpolation. The data set is projected by UTM with spatial resolution of 500m, providing daily snow cover FSC results in the Tibetan Plateau. The data set is a day-to-day document, from 24 February 2000 to 31 December 2015. Each file is the result of snow area proportion on that day, the value is 0-100%, which is envi standard file, the naming rule is: yyyddd_fsc_0.5km.img, where yyyy represents the year, DDD represents Julian day (001-365 / 366). Files can be opened and viewed directly with envi or ArcMap. The original MODIS Snow data product for cloud removal comes from the mod10a1 product processed by the National Snow and Ice Data Center (NSIDC). This data set is in the format of HDF and uses the sinusional projection. The attributes of the daily cloudless MODIS Snow area ratio data set (2000-2015) on the Qinghai Tibet Plateau consist of the spatial-temporal resolution, projection information and data format of the data set. Temporal and spatial resolution: the temporal resolution is day by day, the spatial resolution is 500m, the longitude range is 72.8 ° ~ 106.3 ° e, and the latitude is 25.0 ° ~ 40.9 ° n. Projection information: UTM projection. Data format: envi standard format. File naming rules: "yyyyddd" + ". Img", where yyyy stands for year, DDD stands for Julian day (001-365 / 366), and ". Img" is the file suffix added for easy viewing in ArcMap and other software. For example, 2000055 ﹐ FSC ﹐ 0.5km.img represents the result on the 55th day of 2000. The envi file of this data set is composed of header file and body content. The header file includes row number, column number, band number, file type, data type, data record format, projection information, etc.; take 2000055 ﹣ FSC ﹣ 0.5km.img file as an example, the header file information is as follows: ENVI Description = {envi file, created [sat APR 27 18:40:03 2013]} Samples = 5760 Lines = 3300 Bands = 1 Header offset = 0 File type = envi standard Data type = 1: represents byte type Interleave = BSQ: data record format is BSQ Sensor type = unknown Byte order = 0 Map Info = {UTM, 1.500, 1.500, - 711320.359, 4526650.881, 5.0000000000e + 002, 5.0000000000e + 002, 45, north, WGS-84, units = meters} Coordinate system string = {projcs ["UTM [u zone [45N], geocs [" GCS [WGS [1984], data ["d [WGS [1984", organization ID ["WGS [1984", 6378137.0298.257223563]], prime ["Greenwich", 0.0], unit ["degree", 0.01745532925199433]]] project ["transfer [Mercator"]] parameter ["false [easting", 500000.0], parameter ["false [easting", 500000.0], parameter [500000.0], parameter [500000.0], parameter [false [false [easting ", 500000.0], parameter], parameter [500000.0], parameter [500000.0], parameter [500000.0], parameter [false [easting", 500000.0], parameter [500000.0], parameter [500000.0], parameter [500000.0], parameter ["false_northing", 0.0], parameter ["central_meridian", 87.0], parameter ["scale" _Factor ", 0.9996], parameter [" latitude ﹣ of ﹣ origin ", 0.0], unit [" meter ", 1.0]]} Wavelength units = unknown, band names = {2000055}
TANG Zhiguang, WANG Jian
Among many indicators reflecting changes in climate and environment, the stable isotope index of ice core is an indispensable parameter in ice core record research, and it is one of the most reliable means and the most effective way to restore past climate change. Meanwhile, ice core accumulation is a direct record of precipitation on the glacier, and high-resolution ice core records ensure continuity of precipitation records. Therefore, ice core records provide an effective means of restoring changes in precipitation. Stable isotopes from ice cores drilled throughout the TP have been used to reconstruct climate histories extending back several thousands of years. This dataset provides data support for studying climate change on the Tibetan Plateau.
XU Baiqing
As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. By drilling and sampling ice cores and snow samples and measuring BC concentration, historical record and spatial distribution can be abtained. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.
XU Baiqing
The data set of ice core-snow black carbon content on the Tibetan plateau (1950-2006) contains five (5) tables: 1 Xu et al. 2006 AG, 2 Xu et al. 2009 PNAS_Conc., 3 Xu et al. 2009 PNAS_flux, 4 Xu et al. 2012 ERL, 5 Wang et al. 2015 ACP. The data collection sites include the Meikuang glacier, Dongkemadi, Qiangyong, Kangwure, Naimona’nyi, Muztagata, Rongbuk, Tanggula Mountain, Ningjin Gangsang, Zuoqipu, and Glacier No. 1 at the headwaters of the Ürüqi River. The latitudes and longitudes of the collection locations, elevations and other information are marked in the data. The main indicators of the data are location, time, organic carbon (OC), elemental carbon (EC), black carbon (BC) content and flux. Location: latitude and longitude Time: year or date OC: organic carbon EC: elemental carbon BC: Black carbon Conc.: content, unit: ng g-1 Flux: flux, unit: mg m-2a-1 The data come from the following subjects. 1. National Program on Key Basic Research Project (973 Program):Temporal and Spatial Characteristics and Remote Sensing Modeling of Global Change Sensitive Factors; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the Ministry of Science and Technology. 2. National Key Basic Research Program: The Response of Formation and Evolution on the Tibetan Plateau to Global Changes and Adaptation Strategy; Person in charge: Tandong Yao; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the Ministry of Science and Technology. 3. The General Program of National Natural Science Foundation of China: High-resolution Carbon Black Recording in Snow Ice of the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 4. The General Program of the National Natural Science Foundation of China: Extraction of Climate and Environment Information from Ice Core Encapsulated Gas on the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 5. National Natural Science Foundation of China for Distinguished Young Scholars: Snow and Ice-Atmospheric Chemistry and Environmental Changes on the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 6. National Natural Science Foundation of China for Distinguished Young Scholars: Study on the Changes of Aerosol Emissions and Combustion in Human Activities in South Asia in the Past 100 Years; Person in charge: Mo Wang; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). Observation methods: two-step heating method, thermal/optical carbon analysis method, and single-particle black carbon aerosol photometer.
XU Baiqing
The variation in the duration of snow on the Tibetan Plateau is relatively great, and the high mountainous areas around the plateau are rich in snow and ice resources. Taking full account of the terrain of the Tibetan Plateau and the snow characteristics in the mountains, the data set adopted AVHRR data to gradually realize generating data products for daily, ten-day, and monthly snow cover areas while maintaining the snow classification accuracy. These data included the daily/10-day/monthly snow cover area data for the Tibetan Plateau from 2007 to 2015, the average accuracy of which is 0.92. It can provide reliable data for snow changes during the historical periods of the Tibetan Plateau.
QIU Yubao
Due to the short snow duration and thin snow layer on the Tibetan Plateau, dynamic monitoring data for daily fractional snow cover are urgently needed in order to better understand water cycling and other processes. This data set is based on MODIS Snow Cover Daily L3 Global 500 m Grid data and includes the Normalized Difference Snow Index (NDSI) data product generated from MODIS/Terra data (MOD10A1) and MODIS/Aqua data (MYD10A1). The data are in the .hdf format. The projection method is sinusoidal map projection. Combining the advantages of 90 m SRTM terrain data and fractional snow cover estimation algorithms under multiple cloud coverage types, the fractional snow cover under different cloud coverage conditions can be re-estimated to meet the production requirements of the daily less cloud (< 10%) data products in High Asia. On the basis of this method, the MODIS daily fractional snow cover data set over High Asia (2002-2016) was constructed. By taking the binary snow product under cloudless conditions as a reference, the spatial and temporal comparisons between snow distribution and snow coverage show that the spatio-temporal characteristics of the product and the binary products are highly consistent. Taking the winter of 2013 as an example, when the fractional snow cover is greater than 50%, the correlation can reach 0.8628. This data set provides daily fractional snow cover data for use in studying snow dynamics, the climate and environment, hydrology, energy balance, and disaster assessment in High Asia.
QIU Yubao
The Tibetan Plateau has an average altitude of over 4000 m and is the region with the highest altitude and the largest snow cover in the middle and low latitudes of the Northern Hemisphere regions. Snow cover is the most important underlying surface of the seasonal changes on the Tibetan Plateau and an important composing element of ecological environment. Ice and snow melt water is an important water resource of the plateau and its downstream areas. At the same time, plateau snow, as an important land-surface forcing factor, is closely related to disastrous weather (such as droughts and floods) in East Asia, the South Asian monsoon and in the middle and lower reaches of the Yangtze River. It is an important indicator of short-term climate prediction and one of the most sensitive responses to global climate change. The snow depth refers to the vertical depth from the surface of the snow to the ground. It is an important parameter for snow characteristics and one of the conventional meteorological observation elements. It is the key parameter of snow water equivalent estimation, climate effect studies of snow cover, the basin water balance, the simulation and monitoring of snow-melt, and snow disaster evaluation and grading. In this data set, the Tibetan Plateau boundary was determined by adopting the natural topography as the leading factor and by comprehensive consideration of the principles of altitude, plateau and mountain integrity. The main part of the plateau is in the Tibetan Autonomous Region and Qinghai Province, with an area of 2.572 million square kilometers, accounting for 26.8% of the total land area of China. The snow depth observation data are the monthly maximum snow depth data after quality detection and quality control. There are 102 meteorological stations in the study area, most of which were built during the 1950s to 1970s. The data for some months or years for sites existing during this period were missing, and the complete observational records from 1961 to 2013 were adopted. The temporal resolution is daily, the spatial coverage is the Tibetan Plateau, and all the data were quality controlled. Accurate and detailed plateau snow depth data are of great significance for the diagnosis of climate change, the evolution of the Asian monsoon and the management of regional snow-melt water resources.
National Meteorological Information Center, Tibet Meteorological Bureau, China
Snow duration on the Tibetan Plateau changes relatively quickly, and the mountainous areas around the plateau are characterized by abundant snow and ice resources and active atmospheric convection. Optical remote sensing is often affected by clouds. Snow cover monitoring needs to consider the cloud-removal problem on a daily time scale. Taking full account of the terrain of the Tibetan Plateau and the characteristics of snow on the mountains, this data set adopted a combination of various cloud-removing processes and steps to gradually remove the daily snow cover by maintaining the cloud-classify accuracy of the snow cover. In addition, a step-by-step comprehensive classification algorithm was formed, and the “MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)” was completed. Two snow seasons from October 1, 2009, to April 30, 2011, were selected as test data for algorithm research and accuracy verification, and the snow depth data provided by 145 ground stations in the study area were used as a ground reference. The results showed that in the plateau region, when the snow depth exceeds 3 cm, the total classification accuracy of the cloud-free snow cover products is 96.6%, and the snow cover classification accuracy is 89.0%. The whole algorithm procedure, based on WGS84 projected MODIS snow products (MOD10A1 and MYD10A1) with medium resolution, results in a small loss of cloud-removal accuracy, which made the data highly reliable.
QIU Yubao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn