The data source of this data set is the European Space Agency (ESA) multispectral satellite Sentinel-2. It includes the annual mean data of CDOM and DOC of Qinghai Tibet Plateau lakes in 2017. Method of use: Based on the CDOM data of the measured sample points, the image reflectance information is extracted, the best prediction variable is selected through Pearson correlation analysis, and a multiple stepwise regression CDOM prediction model is constructed to obtain the CDOM results of the Qinghai Tibet Plateau water body. Because CDOM has a good correlation with DOC, DOC prediction results are calculated by CDOM. Adjustment R of the CDOM model of the final Qinghai Tibet Plateau ² Up to 0.81.
SONG Kaishan
Snow cover is an important component of the cryosphere and an indispensable variable in the scientific research of global change and Earth system. The distribution range and phenological information of snow cover are important indicators to measure the variation characteristics of snow cover, and also important parameters for snow melting runoff simulation in the hydrological model of cold regions. The High Mountain Asia is the source of many international rivers, and also the hot spot of global climate change research; The ecological and environmental problems caused by the change of ice and snow in the region, such as the reduction of water resources, the increase of extreme weather events, and the frequent occurrence of disasters, have attracted extensive attention from all countries. Therefore, it is very important for climate change research, water resources management, disaster early warning and prevention to accurately obtain long-term snow distribution and snow phenology data in High Mountain Asia . The daily cloudless MODIS normalized snow cover index (NDSI) product (2000-2021500 m) in the High Mountain Asia is based on the MODIS daily snow cover product (including Terra Morning Star data product MOD10A1 and Aqua Afternoon Star data product MYD10A1, C6 versions), and is processed by the same day afternoon star data fusion and cubic spline interpolation cloud removal algorithm; Among them, when there was only Morningstar data product MOD10A1 from 2000 to 2002, the cubic spline interpolation algorithm was directly used for cloud removal. The snow cover phenological data set for hydrological years 2002-2020 is prepared based on cloudless MODIS NDSI products in hydrological years, including three parameters: snow onset date (SOD), snow end date (SED) and snow duration days (SDD). This data set has reliable accuracy.
TANG Zhiguang , DENG Gang
Water cover is one of the basic parameters of water cycle and energy balance. Based on the AVHRR daily reflectance time series from 1982 to 2020, this data set has produced 39 year long-term daily water body mapping products (including water body icing information) on the Qinghai Tibet Plateau. This dataset contains 39 folders, named after the year (from 1982 to 2020). Each folder contains 365 / 366 GeoTIFF files, and each file contains two bands: (1) water mapping band (waterlayer); (2) Quality control information band (QC). This product provides data support for remote sensing monitoring of water bodies in the Qinghai Tibet Plateau.
JI Luyan
This data set includes five periods of lake transparency data, including 1995, 2002, 2005, 2010 and 2015. The data sources are: Landsat 5, Landsat 7 and Landsat 8. Method of use: It is convenient to measure the spectral reflectance. On the basis of analyzing the relationship between the spectral reflectance and the transparency measured synchronously, the semi empirical method is used to select the best band combination, establish the transparency algorithm of Qinghai Tibet Plateau lakes, and obtain the water transparency. The verification of measured points shows that the relative error of water transparency estimation is 35%.
SONG Kaishan
Based on the Sentinel-2 and Landsat 5/7/8 multispectral instrument imageries combined with in-situ measured hydrological data, bankfull river geometry of six major exorheic river basins of the Qinghai-Tibet Plateau (the upper Yellow River, upper Jinsha River, Yalong River, Lantsang River, Nu River and Yalung Zangbo River) are presented. River surface of six mainstreams and major tributaries are included. For each river basin, two types of rivers are included: connected and disconnected rivers. Format of the dataset is .shp exported from the ArcGIS 10.5. Three products are included in the dataset: one original product (bankfull river surface dataset) and two derived products (bankfull river width dataset and bankfull river surface area dataset with a 1 km river length interval). These three products are in three folders. The first folder, “1-Bankfull River Surface”, contains river surface vectors for six river basins in the .shp file. The second folder, “2-Bankfull River Width”, contains bankfull river widths and corresponding coordinates with a 1 km-step river length for six mainstreams and some connected tributaries in .xlsx format. The river width vectors in the .shp files are also provided in the second folder. The third folder, “3-Bankfull River Surface Area”, contains bankfull river surface areas and corresponding coordinates with a 1 km-step river length for six mainstreams and some connected tributaries in .xlsx format. Three Supplementary Files are included: Supplementary File 1, tables and figures related to the dataset; Supplementary File 2, used for river surface extraction based on GEE platform; Supplementary File 3, used for river width extraction based on Matlab. The provided planform river hydromorphology data can supplement global hydrography datasets and effectively represent the combined fluvial geomorphology and geological background in the study area.
LI Dan , XUE Yuan , QIN Chao , WU Baosheng , CHEN Bowei , WANG Ge
Fractional Vegetation Cover (FVC) refers to the percentage of the vertical projected area of vegetation to the total area of the study area. It is an important indicator to measure the effectiveness of ecological protection and ecological restoration. It is widely used in the fields of climate, ecology, soil erosion and so on. FVC is not only an ideal parameter to reflect the productivity of vegetation, but also can play a good role in evaluating topographic differences, climate change and regional ecological environment quality. This research work is mainly to post process two sets of glass FVC data, and give a more reliable vegetation coverage of the circumpolar Arctic Circle (north of 66 ° n) and the Qinghai Tibet Plateau (north of 26 ° n to 39.85 °, east longitude 73.45 ° to 104.65 °) in 2013 and 2018 through data fusion, elimination of outliers and clipping.
YE Aizhong
NDVI reflects the background effects of plant canopy, such as soil, wet ground, snow, dead leaves, roughness, etc., and is related to vegetation cover. It is one of the important parameters to reflect the crop growth and nutrient information. According to this parameter, the N demand of crops in different seasons can be known, which is an important guide to the reasonable application of N fertilizer. Correct NDVI (C-NDVI) is the value of NDVI after excluding the influence of climate elements (temperature, precipitation, etc.) on NDVI. Taking precipitation as an example, studies on the lag effect of precipitation on vegetation growth show that the lag time of precipitation effects varies in different regions due to differences in vegetation composition and soil types. In this study, we post-processed the MODIS NDVI data and firstly correlated the NDVI value of the current month with the precipitation of the current month, the average value of the precipitation of the current month with that of the previous month, and the average value of the precipitation of the current month with that of the previous two months to determine the optimal lag time. The NDVI was regressed on precipitation and air temperature to obtain the correlation coefficients, and then the corrected NDVI values were calculated by the difference between the MODIS NDVI and the NDVI regressed on climate factors. We corrected NDVI using climate data to give reliable vegetation correction indices for the circum-Arctic Circle (range north of 66°N) and the Tibetan Plateau (range 26°N to 39.85°N and 73.45°E to 104.65°E) for 2013 and 2018. The spatial resolution of the data is 0.5 degrees and the temporal resolution is monthly values.
YE Aizhong
Normalized Difference Vegetation Index (NDVI) has been widely used for monitoring vegetation. This dataset employed all available Landsat 5/7/8 data on the Qinghai-Tibetan Plateau (QTP) (> 100,000 scenes), and reconstructed high spatiotemporal NDVI time-series data (30-m and 8-d) during 2000-2020 on the TP (QTP-NDVI30) by using the MODIS-Landsat fusion algorithm (gap filling and Savitzky–Golay filtering;GF-SG). For the details of GF-SG, please refer to Chen et al. (2021). This dataset has been evaluated carefully. The quantitative assessments show that the reconstructed NDVI images have an average MAE value of 0.02, correlation coefficient of 0.96, and SSIM value of 0.94. We compared the reconstructed images in some typical areas with the PlanetScope 3-m images and found that the spatial details were well preserved by QTP-NDVI30. The geographic coordinate system of this dataset is GCS_WGS_84. The spatial range covers the vegetation area of the QTP, which is defined as the areas with average NDVI during July- September larger than 0.15.
CAO Ruyin , XU Zichao , CHEN Yang , SHEN Miaogen , CHEN Jin
The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
In this study,a vegetation classification system for the vegetation types in the Qinghai-Tibet Plateau was designed. The integrated classification method,taken into account of multi-source vegetation classification / land cover classification products, was used to produce the actual vegetation map. This integrated classification method followed the principle of data consistency,and the resultant vegetation map was superior over other vegetation maps in terms of reflection of current situation, classification system, and classification accuracy. This vegetation map is timely and could better reflect current vegetation distribution than earlier ones. This vegetation map could be conducive to fully extract vegetation information from multi-source data products with high reliability and consistency. Compared with previous data products,the overall accuracy (78.09%,kappa coefficient is 0.75) of this new vegetation map was found to increase by 18.84%-37.17%,especially for grassland and shrub.
ZHANG Hui, ZHAO Cenliang, ZHU Wenquan
Precipitation over the Tibetan Plateau (TP) known as Asia's water tower plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP that features complex terrain and the harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) data set was generated at a daily timescale and a spatial resolution of 0.1° across the TP for the 1998‒2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root mean squared error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow rivers in the TP. The MSP achieved the best Nash-Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004‒2014. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high quality precipitation data for hydrological research. The latitude and longitude of the left bottom corner across the TP, the number of rows and columns, and grid cells information are all included in each ASCII file.
HONG Zhongkun , LONG Di
Aiming at the 179000 km2 area of the pan three rivers parallel flow area of the Qinghai Tibet Plateau, InSAR deformation observation is carried out through three kinds of SAR data: sentinel-1 lifting orbit and palsar-1 lifting orbit. According to the obtained InSAR deformation image, it is comprehensively interpreted in combination with geomorphic and optical image features. A total of 949 active landslides below 4000m above sea level were identified. It should be noted that due to the difference of observation angle, sensitivity and observation phase of different SAR data, there are some differences in the interpretation of the same landslide with different data. The scope and boundary of the landslide need to be corrected with the help of ground and optical images. The concept of landslide InSAR recognition scale is different from the traditional spatial resolution and mainly depends on the deformation intensity. Therefore, some landslides with small scale but prominent deformation characteristics and strong integrity compared with the background can also be interpreted (with SAR intensity map, topographic shadow map and optical remote sensing image as ground object reference). The minimum interpretation area can reach several pixels. For example, a highway slope landslide with only 4 pixels is interpreted with reference to the highway along the Nujiang River.
YAO Xin
Funded by the National Key R&D Program "Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", "Multi-scale Observation and Data Product Development of Key Cryosphere Parameters", Changes and impacts of glaciers, snow cover and permafrost and how to deal with them (Grant NO.2019QZKK0201), and Pan-tertiary environmental change and the construction of green silk road (Grant NO.XDA20000000), the research group of Zhang Yinsheng, Institute of Qinghai-Tibet Plateau, Chinese Academy of Sciences developed downscaled snow water equivalent products in the Qinghai-Tibet Plateau. The sub-pixel space-time decomposition algorithm was used to downscale the 0.05° daily snow depth data set (2000-2018) over the Qinghai-Tibet Plateau. And the snow depth depletion model was used to supplement the estimation of the snow depth value in the shallow snow area that cannot be detected by passive microwave remote sensing. Finally, based on the snow density grid data, the snow depth data is converted into snow water equivalent data.
YAN Dajiang, ZHANG Yinsheng
This data is a high-resolution soil freeze/thaw (F/T) dataset in the Qinghai Tibet Engineering Corridor (QTEC) produced by fusing sentinel-1 SAR data, AMSR-2 microwave radiometer data, and MODIS LST products. Based on the newly proposed algorithm, this product provides the detection results of soil F/T state with a spatial resolution of 100 m on a monthly scale. Both meteorological stations and soil temperature stations were used for results evaluation. Based on the ground surface temperature data of four meteorological stations provided by the national meteorological network, the overall accuracy of soil F/T detection products achieved 84.63% and 77.09% for ascending and descending orbits, respectively. Based on the in-situ measured 5 cm soil temperature data near Naqu, the average overall accuracy of ascending and descending orbits are 78.58% and 76.66%. This high spatial resolution F/T product makes up traditional coarse resolution soil F/T products and provides the possibility of high-resolution soil F/T monitoring in the QTEC.
ZHOU Xin , LIU Xiuguo , ZHOU Junxiong , ZHANG Zhengjia , CHEN Qihao , XIE Qinghua
Based on long-term series Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products, daily snow cover products without data gaps at 500 m spatial resolution over the Tibetan Plateau from 2002 to 2021 were generated by employing a Hidden Markov Random Field (HMRF) modeling technique. This HMRF framework optimally integrates spectral, spatiotemporal, and environmental information together, which not only fills data gaps caused by frequent clouds, but also improves the accuracy of the original MODIS snow cover products. In particular, this technology incorporates solar radiation as an environmental contextual information to improve the accuracy of snow identification in mountainous areas. Validation with in situ observations and snow cover derived from Landsat-8 OLI images revealed that these new snow cover products achieved an accuracy of 98.31% and 92.44%, respectively. Specifically, the accuracy of the new snow products is higher during the snow transition period and in complex terrains with higher elevations as well as sunny slopes. These gap-free snow cover products effectively improve the spatiotemporal continuity and the low accuracy in complex terrains of the original MODIS snow products, and is thus the basis for the study of climate change and hydrological cycling in the TP.
HUANG Yan , XU Jianghui
The dataset contains the continuous daily lake surface temperature of 160 Lakes (with an area of more than 40km2) in the Tibetan Plateau from 1978 to 2017. Firstly, an semi-physical lake model (air2water) based on energy balance was improved to realize the continuous simulation of lake surface temperature even during ice age. The impoved model was calibrated by lake surface temperature from MOD11A1 product. The correlation between the dataset and in-situ lake surface temperature of four lakes is higher than 0.9, and the root mean square errors are less than 2.5 ℃. The data set provides data support for understanding the water and heat balance , the process of aquatic ecosystem and its response to climate change of lakes in the Tibetan Plateau.
GUO Linan , WU Yanhong, ZHENG Hongxing , ZHANG Bing , WEN Mengxuan
This data set is the spectral reflectance data of typical features in Ali during August to September in 2017, using ASD FieldSpec 4. The day of spectral data obtaining was sunny, we recorded the cloud condition during measuring. The white board was calibrated before measurement; The longitude and latitude coordinates are recorded by GPS. We measured the spectral reflectance data of different vegetation types and soil surrounding them. The DN value (.asd format) recorded by instrument can be read by ViewSpecPro, then converted into reflectance using EXCEL with the white board data. Spectral reflectance data is used to extract spectral characteristics of different vegetation types, vegetation classification, inversion of vegetation coverage and so on.
LIU Linshan, ZHANG Binghua
This dataset was captured during the field investigation of the Qinghai-Tibet Plateau in June 2021 using uav aerial photography. The data volume is 3.4 GB and includes more than 330 aerial photographs. The shooting locations mainly include roads, residential areas and their surrounding areas in Lhasa Nyingchi of Tibet, Dali and Nujiang of Yunnan province, Ganzi, Aba and Liangshan of Sichuan Province. These aerial photographs mainly reflect local land use/cover type, the distribution of facility agriculture land, vegetation coverage. Aerial photographs have spatial location information such as longitude, latitude and altitude, which can not only provide basic verification information for land use classification, but also provide reference for remote sensing image inversion of large-scale regional vegetation coverage by calculating vegetation coverage.
LV Changhe, ZHANG Zemin
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
The dataset is the Landsat enhanced vegetation index (EVI) products from 1970s to 2020 over the Tibetan Plateau。The dataset is producted based on Landsat surface reflectance dataset. It is calculated by the EVI equation which is added backgroud adjusted parameters C1 and C2, and atmospheric adjusted parameter L based on NDVI equation.And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow. Compared with NDVI, EVI has stronger ability to resist atmospheric interference and noise,so it is more suitable for weather conditions with high aerosol content and lush vegetation areas.
PENG Yan
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn