The high-resolution atmosphere-hydrologic simulation dataset over Tibetan Plateau is prepared by WRFv4.1.1 model with grids of 191 * 355 and spatial resolution of 9 km, and a spatial range covering the entire plateau. The main physics schemes are configured with Thompson microphysics scheme, the rapid radiative transfer model (RRTM), and the Dudhia scheme for longwave and shortwave radiative flux calculations, respectively, the Mellor-Yamada-Janjic (MYJ) TKE scheme for the planetary boundary layer and the Unified Noah Land Surface Model. The time resolution is 3h and the time span is 2000-2010. Variables include: precipitation (Rain), temperature (T2) and water vapor (Q2) at 2m height on the ground, surface skin temperature (TSK), ground pressure (PSFC), zonal component (U10) and meridional component (V10) at 10m heigh on the ground, downward long-wave flux (GLW) and downward short-wave flux (SWDOWN) at surface, ground heat flux (GRDFLX), sensible heat flux (HFX), latent heat flux (LH), surface runoff (SFROFF) and underground runoff (UDROFF). The data can effectively support the study of regional climate characteristics, climate change and its impact over the Tibet Plateau, which will provide scientific basis for the sustainable development of the TP under the background of climate change.
MENG Xianhong, MA Yuanyuan
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
YANG Kun
Based on the long-term observation data of each field station in the alpine network and overseas stations in the pan third polar region, a series of data sets of meteorological, hydrological and ecological elements in the pan third polar region are established; the inversion of data products such as meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacial and frozen soil changes are completed through enhanced observation and sample site verification in key regions; based on the IOT Network technology, the development and establishment of multi station network meteorological, hydrological, ecological data management platform, to achieve real-time access to network data and remote control and sharing. The data includes the daily meteorological observation data sets (air temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and evaporation) of the Qinghai Tibet Plateau in 2014-2017 from 17 stations of China Alpine network. The data of the three river sources are missing.
ZHU Liping,
The meteorological data set of Beiluhe station mainly includes 7 meteorological elements such as atmospheric temperature, wind speed, wind direction, humidity, atmospheric pressure, solar radiation and daily rainfall of 2m. The monitoring station of the data set is located at 92 ° E, 35 ° N and 4600m above sea level. The terrain of the monitoring site is flat, and the vegetation type is alpine meadow. The measuring sensors are manufactured by Campell company, of which the measurement of high temperature and humidity is transmitted The sensor model is HMP45C, the wind speed and direction sensor model is 05103, the atmospheric pressure measurement sensor model is ptb-210, the solar radiation sensor model is nr01, the rain gauge sensor model is t-200b, the time interval of this data set is 1 day, which is obtained through the calculation of 30 minute data. During the monitoring period, the data is stable and continuous. Through the analysis of meteorological data, we can recognize Beilu river The change of local climate is not only helpful, but also an indispensable index in the study of frozen soil environment and engineering.
CHEN Ji
This dataset is derived from the Nagqu Station of Plateau Climate and Environment (31.37N, 91.90E, 4509 a.s.l), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. The ground is flat, with open surrounding terrain. An uneven growth of alpine steppe, with a height of 3–20 cm. The observation time of this dataset is from January 1, 2014 to December 31, 2017. The observation elements primarily included the wind speed, air temperature, air relative humidity, air pressure, downward shortwave radiation, precipitation, evaporation, latent heat flux and CO2 flux. The precipitation , evaporation and CO2 flux data are daily cumulative values, and the other variables are daily average values. The observed data are generally continuous, but some data are missing due to power supply failure, and the missing data in this dataset are marked as NAN.
HU Zeyong, GU Lianglei, SUN Fanglei, WANG Shujin
1. Data content: air temperature, relative humidity, precipitation, air pressure, wind speed, average total radiation, total net radiation value and daily average water vapor pressure data. 2. Data source and processing method: Observed by American campel high-altitude automatic weather station, air temperature and humidity sensor model HMP155A; wind speed and wind direction model: 05103-45; net radiometer: CNR 4 Net Radiometer four component; atmospheric pressure sensor: CS106; Rain gauge: TE525MM. The automatic weather station automatically collects data every 10 minutes, and collects daily statistical data to obtain daily average weather data. 3. Data quality description: Data is automatically acquired continuously. 4. Data application results and prospects: The weather station is located in the middle of the glacier, and the meteorological data can provide data guarantee for simulating the response of oceanic glacier changes to global climate change in the context of future climate change.
LIU Jing
1.The data content: air temperature, relative humidity, precipitation, air pressure, wind speed, the average daily data of total radiation, the total net radiation and vapor pressure. 2. Data sources and processing methods: campel mountain type automatic meteorological station observation by the United States, including air temperature and humidity sensor model HMP155A;Wind speed and direction finder models: 05103-45;Net radiation instrument: CNR four radiometer component;The atmospheric pressure sensor: CS106;The measuring cylinder: TE525MM.Automatic meteorological station every ten minutes automatic acquisition data, after complete automatic acquisition daily meteorological data then daily mean value were calculated statistics. 3.Data quality description: automatic continuous access to data. 4.Data application results and prospects: the weather set in upper glaciers, meteorological data provide data support for snow - runoff model simulation, and provides data for the glacier dynamics model and simulation.
LIU Jing
1.The data content: air temperature, relative humidity, precipitation, air pressure, wind speed and vapor pressure. 2. Data sources and processing methods: campel mountain type automatic meteorological station observation by the United States, including air temperature and humidity sensor model HMP155A;Wind speed and direction finder models: 05103-45;The atmospheric pressure sensor: CS106;The measuring cylinder: TE525MM.Automatic meteorological station every ten minutes automatic acquisition data, after complete automatic acquisition daily meteorological data then daily mean value were calculated statistics. 3.Data quality description: automatic continuous access to data. 4.Data application results and prospects: the weather stations set in the upper of the glacier terminal, meteorological data can be used to simulate for predict the future climate change under the background of type Marine glacial changes in response to global climate change research provides data.
LIU Jing
The data set collects the long-term monitoring data on atmosphere, hydrology and soil from the Integrated Observation and Research Station of Multisphere in Namco, the Integrated Observation and Research Station of Atmosphere and Environment in Mt. Qomolangma, and the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data have three resolutions, which include 0.1 seconds, 10 minutes, 30 minutes, and 24 hours. The temperature, humidity and pressure sensors used in the field atmospheric boundary layer tower (PBL) were provided by Vaisala of Finland. The wind speed and direction sensor was provided by MetOne of the United States. The radiation sensor was provided by APPLEY of the United States and EKO of Japan. Gas analysis instrument was provided by Licor of the United States, and the soil moisture content, ultrasonic anemometer and data collector were provided by CAMPBELL of the United States. The observing system is maintained by professionals on a regular basis (2-3 times a year), the sensors are calibrated and replaced, and the collected data are downloaded and reorganized to meet the meteorological observation specifications of the National Weather Service and the World Meteorological Organization (WMO). The data set was processed by forming a time continuous sequence after the raw data were quality-controlled, and the quality control included eliminating the systematic error caused by missing data and sensor failure.
MA Yaoming
These are the meteorological, soil, vegetation and other data observed by the Gongga Mountain Forest Ecosystem Test Station on the eastern margin of the Tibetan plateau, primarily from 2005 to 2008. Meteorological data: temperature, air pressure, relative humidity, dew point temperature, water pressure, ground temperature, soil temperature (5 cm, 10 cm, 20 cm, and 40 cm), 10-minute average wind, 10-minute maximum wind speed, precipitation, total radiation, net radiation. Tree layer biological observation data: diameter at breast height, tree height, life form Shrub layer biological observation data: tree number, height, coverage, life form, aboveground biomass, underground biomass Herb layer biological observation data: tree (strain) number, average height, coverage, life type, aboveground biomass, underground biomass Leaf area index: tree layer leaf area index, shrub layer leaf area index, grass layer leaf area index Soil organic matter and nutrients: soil organic matter, total nitrogen, total phosphorus, total potassium, nitrate nitrogen, ammonium nitrogen, available nitrogen (alkali-hydrolysable nitrogen), available phosphorus, available potassium, slowly available potassium, PH value in aqueous solution Soil water content: depth, water content
WANG Xiaodan
This data set includes the biomass and photosynthesis observational data of the highland spring barley experimental plot at the Lhasa Farm Experimental Station and the meteorological data observationally obtained at the Damxung Grass Experimental Station. The time range is 2006-2009. Biomass observation method: The sampling area of each sample is 25 cm*25 cm. Photosynthetic data observation: The instrument is a LiCor-6400. The biomass data are manually entered according to the record book. The photosynthetic data are automatically recorded by the instrument. The average wind speed, prevailing wind direction, temperature, atmospheric pressure and relative humidity in the daily values of meteorological data are averaged over half-hour data. The precipitation and total radiation data are automatically recorded by the observation system. The observation process of biomass data is in strict accordance with the agronomic method, and it can be applied to the estimation of agricultural productivity. In the process of photosynthetic data observation, the operation of the instrument and the selection of the observation object are strictly in accordance with professional requirements and can be used in photosynthetic parameter simulations estimating plant leaf and productivity. The Tibetan Plateau farmland ecosystem observation data includes: 1) aboveground biomass; 2) CO2 response photosynthetic data; 3) light-response photosynthetic data; and 4) daily meteorological data in Damxung Monitoring Point. Data collection locations: Lhasa Agricultural Ecology Experimental Station, Chinese Academy of Sciences, Longitude: 91°20’, Latitude: 29°41’, Altitude: 3688 m and Damxung Alpine Meadow Carbon Flux Observation Station, Longitude: 91°05′, Latitude: 30°25′, Altitude: 4333 m.
ZHANG Xianzhou
This data set mainly includes meteorological data and soil moisture data collected from 2005 to 2008 at the Sherjila Mountain Alpine Timberline Observation Site of the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set of alpine timberline observations in southeast Tibet includes 1) the meteorological data set and 2) the soil moisture data set. The meteorological data set includes wind speed, temperature (1, 3 m), relative humidity (1, 3 m), soil heat flux (-5, -20, -60 cm), soil temperature (-5, -20, -60 cm), air pressure, total radiation, net radiation, photosynthetically active radiation, infrared radiation (660, 730 nm), atmospheric longwave radiation, ground longwave radiation, surface temperature, precipitation, and snow thickness. The soil moisture data set includes vegetation type and soil water content (-5, -20, -60 cm). Instruments used for each variable: Temperature: Air temperature probe, produced in Taiwan, model TRH-S. Relative humidity: Model TRH-S, produced in Taiwan. Wind speed: Anemoscope, produced in Taiwan, model 03102. Barometric Pressure: Barometric pressure sensor, produced in Taiwan, model BP0611A. Atmospheric longwave radiation: Pyrgeometer, produced by the Kipp & Zonen Company of the Netherlands, model CG3. Ground longwave radiation: Pyrgeometer, produced by the Kipp & Zonen Company of the Netherlands, model CG3. Total radiation: Pyranometer, produced by the Kipp & Zonen Company of the Netherlands, model CM3. Net radiation: Net radiometer, produced by the Kipp & Zonen Company of the Netherlands, model NR-Lite. Photosynthetically active radiation: PAR-Sensor, produced by the Kipp & Zonen Company of the Netherlands, model MS-PAR. Infrared radiation: Infrared radiation sensor, produced by the Skye Company of the UK, model SKY110. Rainfall: Rain gauge, produced in Taiwan, model 7852 M. Snow thickness: Ultrasonic snow depth sensor, produced in the United States, model 260-700. Soil temperature: Soil temperature probe, produced by the Onset Company of the United States, model 12-Bit. Soil heat flux: Soil heat flux plate, produced by the Hukseflux Company of the Netherlands, model HFP01. Soil moisture content: Soil moisture sensor, produced by the Onset Company of the United States, model S-SMA-M003. The observations and data acquisition were carried out in strict accordance with the instrument operating specifications. Each instrument was rigorously validated and calibrated by the supplier before installation to ensure the accuracy of the observation data. Data with significant errors were removed when processing the data table.
LIU Xinsheng, LUO Tianxiang
This data set contains meteorological observation data from three meteorological stations in the Shandong section of the Qilian Mountains (Xiying Reservoir [XYSCZ], Forest Protection Station [XYHLZ] and Shangchigou [XYSCG]), including temperature, precipitation, relative humidity, wind speed, main wind direction, total radiation and air pressure, and the temporal resolution is one day. The raw data were observed and collected in strict accordance with the instrument operating specifications. The accuracy of the data meets the requirements of the National Meteorological Administration and the World Meteorological Organization (WMO) for meteorological observation data. The observation system is maintained by professionals 2-3 times a year, during which the sensor is calibrated or replaced and the collected data are downloaded and reorganized. The data are the continuous sequence generated by quality controlling the raw data, and some obvious systematic error data caused by missing points and sensor failure are eliminated.
GAO Hongshan
This data set contains the daily values of temperature, air pressure, relative humidity, wind speed, precipitation, and total radiation observed at the Namco station from 1 October 2005 to 31 December 2016. The data set was processed as a continuous time series after the original data were quality controlled. After the systematic error caused by missing data points and sensor failure was eliminated, the data set reaches the accuracy of raw meteorological observation data required by the National Weather Service and the World Meteorological Organization (WMO). The data can provide information for professionals engaged in scientific research and training related to atmospheric physics, atmospheric environment, climate, glaciers, frozen soils and other disciplines. This data set has mainly been applied in the fields of glaciology, climatology, environmental change, cold zone hydrological processes, frozen soil science, etc. The measured parameters had the following units and accuracies: Air temperature, unit: °C, accuracy: 0.1 °C; air relative humidity, unit: %, accuracy: 0.1%; wind speed, unit: m/s, accuracy: 0.1 m/s; wind direction, unit: °, accuracy: 0.1 °; air pressure, unit: hPa, accuracy: 0.1 hPa; precipitation, unit: mm, accuracy: 0.1 mm; total radiation, unit: W/m2, accuracy: 0.1 W/m2.
WANG Yuanwei, WU Guangjian
This data set includes daily average data of atmospheric temperature, relative humidity, precipitation, wind speed, wind direction, net radiance, and atmospheric pressure from 1 January 2007 to 31 December 2016 derived from the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set has been used by students and researchers in the fields of meteorology, atmospheric environment and ecological research. The units of the various meteorological elements are as follows: temperature °C; precipitation mm; relative humidity %; wind speed m/s; wind direction °; net radiance W/m2; pressure hPa; and particulate matter with aerodynamic diameter less than 2.5 μm μg/m3. All the data are the daily averages calculated from the raw observations. Observations and data collection were carried out in strict accordance with the instrument operating specifications and the guidelines published in relevant academic journals; data with obvious errors were eliminated during processing, and null values were used to represent the missing data. In 2015, due to issues related to the age of the observation probe at the station, only the wind speed data for the last 8 months were retained.
Luo Lun
This data set includes daily values of temperature, pressure, relative humidity, wind speed, wind direction, precipitation, radiation, water vapour pressure and other elements obtained from the Integrated Observation and Research Station of the Westerly Environment in Muztagh Ata from 18 May 2003 to 31 December 2016. The data are obtained by an automatic meteorological station (Vaisala) that recorded one measurement every 30 minutes. The data set was processed as a continuous time series after the original data were quality controlled. This data set satisfies the accuracy requirements of the meteorological observations of the National Weather Service and the World Meteorological Organization (WMO), and the systematic errors caused by the tracking data and sensor failure have been eliminated. The data set has mainly been applied in the fields of glaciology, climatology, environmental change research, cold zone hydrological process research and frozen soil science. Furthermore, this data set is mainly used by professionals engaged in scientific research and training in atmospheric physics, atmospheric environment, climate, glaciers, frozen soil and other disciplines.
WANG Yuanwei, XU Baiqing
This data set includes the daily averages of the temperature, pressure, relative humidity, wind speed, precipitation, global radiation, P2.5 concentration and other meteorological elements observed by the Qomolangma Station for Atmospheric and Environmental Observation and Research from 2005 to 2016. The data are aimed to provide service for students and researchers engaged in meteorological research on the Tibetan Plateau. The precipitation data are observed by artificial rainfall barrel, the evaporation data are observed by Φ20 mm evaporating pan, and all the others are daily averages and ten-day means obtained after half hour observational data are processed. All the data are observed and collected in strict accordance with the Equipment Operating Specifications, and some obvious error data are eliminated when processing the generated data.
MA Yaoming
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn