The population, grain, grain sown area and year-end data sets are extracted from the provincial and prefecture level statistical yearbooks of Qinghai, Tibet, Xinjiang, Gansu, Sichuan and Yunnan for many consecutive years. The missing data are interpolated as follows: 1. To ensure the accuracy of county data, Some counties and cities have been merged in this data (there may be errors in dividing and imputing the data for 20 years according to the proportion, but there will certainly be no problem in the merger, and the county area is small, so it is merged). 2. Xiahe County and cooperative city are merged into Xiahe County (cooperative city was separated from Xiahe County in 1998). 3. Gucheng district and Yulong County are merged into Gucheng district (Lijiang County was divided into Gucheng district and Yulong County in 2003). 4. The inner city district, East City District, West City District The four districts in Chengbei district have been merged into the district directly under the central government of Xining City (because the population of the four districts is given separately or the sum is given, and the total area of the four districts is only 487 square kilometers, they are merged). 5. For some missing data, curve fitting has been carried out in combination with similar years, and R2 is between 0.85-0.99. 6. In order to ensure the accuracy of the data, change maps have been prepared County by county
ZHANG Lu
The data is the population and urbanization data of the Qinghai Tibet Plateau. The data are mainly from census data, including 1990, 2000 and 2010. The main data fields include resident population, urban population and urbanization rate of resident population. Under the GIS platform, the spatial database is constructed through the connection of administrative division vector data and population data. Among them, the data quality related to population is accurate to people. The data mainly serve the research on population geography, urbanization and urban development of the Qinghai Tibet Plateau. It is worth noting that the data of resident population and urbanization rate in census years are relatively accurate. With the opening of the data of the seventh census, it will be updated one after another.
QI Wei
The temperature humidity index (THI) was proposed by J.E. Oliver in 1973. Its physical meaning is the temperature after humidity correction. It considers the comprehensive impact of temperature and relative humidity on human comfort. It is an important index to measure regional climate comfort. On the basis of referring to the existing classification standards of physiological and climatic evaluation indexes, combined with the natural and geographical characteristics of the Qinghai Tibet Plateau and facing the needs of human settlements suitability evaluation in the Qinghai Tibet Plateau, the temperature and humidity index and its suitability zoning results of the Qinghai Tibet Plateau (more than 3000 meters) are developed (including unsuitable, critical suitable, general suitable, relatively suitable and highly suitable).
LI Peng, LIN Yumei
Topographic relief is a comprehensive representation of regional altitude and surface cutting degree. Based on the definition and calculation formula of topographic relief under the background of China's human settlements assessment, the digital elevation model (Aster GDEM 30 m) data is resampled into 1 km, The data set includes: (1) kilometer grid spatial data of Tibetan Plateau topographic relief( 2) Terrain suitability evaluation data of Qinghai Tibet Plateau. The data can be used to analyze the spatial difference of topographic relief of the Qinghai Tibet Plateau, which is of great significance to the study of human settlements and Natural Suitability of the Qinghai Tibet Plateau.
XIAO Chiwei, LI Peng,
The data set is mainly included the population, arable land and animal husbandry data of Qinghai Province and Tibet Autonomous Region in the past 100 years. The data mainly comes from historical documents and modern statistics. The data quality is more reliable. It mainly provides arguments for the majority of researchers in the development of agriculture and animal husbandry on the Qinghai-Tibet Plateau.
LIU Fenggui
This data set includes the urban distribution, urban population and built-up areas of the Qinghai Tibet Plateau from 2000 to 2015. The urban distribution data is the county-level vector boundary in 2015, and the urban population and built-up area data years are 2000, 2005, 2010 and 2015. Among them, the data of urban distribution and built-up areas are from the research team of Kuang Wenhui, Professor of Institute of geography and resources, Chinese Academy of Sciences, and the data of urban population are from the census data of each year, the statistical yearbook of each province in the Qinghai Tibet Plateau, etc. The data quality is excellent, which can be used to analyze the population growth trend, urban expansion and the impact of human activities on the surrounding environment of cities and towns in the Qinghai Tibet Plateau.
KUANG Wenhui
The Grassland Degradation Assessment Dataset in agricultural and pastoral areas of the Qinghai-Tibet Plateau (QTP) is a data set based on the 500m Global Land Degradation Assessment Data (2015), which is evaluated according to the degree of grassland degradation or improvement. In this dataset, the grassland degradation of the QTP was divided into two evaluation systems. At the first level, the grassland degradation assessment was divided into 3 types, including no change type, improvement type and degradation type. At the second level, the grassland degradation assessment on the QTP was divided into 9 types, among which the type with no change was class 1, represented by 0. There were 4 types of improvement: slight improvement (3), relatively significant improvement (6), significant improvement (9) and extremely significant improvement (12). The degradation types can be divided into 4 categories: slight degradation (-3), relatively obvious degradation (-6), obvious degradation (-9) and extremely obvious degradation (-12). This dataset covers all grassland areas on the QTP with a spatial resolution of 500m and a time of 2015. The projection coordinate system is D_Krasovsky_1940_Albers. The data are stored in TIFF format, named “grassdegrad”, and the data volume is 94.76 MB. The data were saved in compressed file format, named “500 m grid data of grassland degradation assessment in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015”. The file volume is 2.54 MB. The data can be opened by ArcGIS, QGIS, ENVI, and ERDAS software, which can provide reference for grassland ecosystem management and restoration on the QTP.
LIU Shiliang, SUN Yongxiu, LIU Yixuan
As the “third pole” of the world, the Qinghai-Tibet Plateau (QTP) is extremely ecologically sensitive and fragile while facing increasing human activities and overgrazing. In this study, eight types of spatial data were firstly selected, including grazing intensity, Night-Time Light, population density, Gross Domestic Product (GDP) density, the ratio of cultivated land, the slope of the Normalized Difference Vegetation Index (NDVI), distance to road, and distance to town. Then, the entropy weight method was applied to determine the weight of each factor. Finally, the five-year interval human activity intensity data in 1990, 1995, 2000, 2005, 2010 and 2015 were made in the agricultural and pastoral areas of QTP through the spatial overlap method. By preparing the historical spatial datasets of human activity intensity, our study will help to explore the influence of human disturbance on the alpine ecosystems on the QTP and provide effective support for decision-making of government aiming at regional ecosystem management and sustainable development.
LIU Shiliang, SUN Yongxiu, LIU Yixuan, LI Mingqi
The natural resources dataset of the Qinghai-Tibetan Plateau covers 215 counties in this area. The observation intervals are 5 years from 2000-2015. The indicators are rainfall, temperature, humidity, population, and land area. The data sources are meteorological station data, regional statistical yearbook, etc., which are expressed by Excel. This data provides a reference for understanding the natural background conditions on the county scale in the Qinghai Tibet Plateau.
FENG Xiaoming
The natural resources dataset of the Qinghai-Tibetan Plateau covers 215 counties in this area. The observation intervals are 5 years from 2000-2015. The indicators are rainfall, temperature, humidity, population, and land area. The data sources are meteorological station data, regional statistical yearbook, etc., which are expressed by Excel. This data provides a reference for understanding the natural background conditions on the county scale in the Qinghai Tibet Plateau.
FENG Xiaoming
The data set of socio-economic vulnerability parameters in the agricultural and pastoral areas of the Qinghai Tibet Plateau mainly contains the socio-economic vulnerability parameter data at county level. The data time range is from 2000 to 2015, involving 112 counties and districts in Qinghai Province and Tibet Autonomous Region. The main parameters include population density, the proportion of unit employees in the total population, the proportion of rural employees in the total population, the proportion of agricultural, forestry, animal husbandry and fishery employees in rural employees, per capita GDP, per capita savings balance of residents, per capita cultivated land area, per capita grain output, and people Average oil production, livestock stock per unit area, per capita meat production, the proportion of primary and secondary school students in the total population, and the number of hospital beds per 10000 people. The entropy weight method is used to calculate the weight of each index, and ArcGIS is used to spatialize, and finally the county scale socio-economic vulnerability parameter data is obtained. The original data is from the statistical yearbook of Qinghai Province and Tibet Autonomous Region. The data are expressed by shape file and excel file. This data set will provide reference for socio-economic vulnerability assessment and selection of typical agricultural and pastoral areas.
ZHAN Jinyan, TENG Yanmin, LIU Shiliang
This data is the distribution data of the prehistoric era sites on the Qinghai-Tibet Plateau and surrounding areas, which is derived from the Supplementary Maps of the paper: Chen, F.H., Dong, G.H., Zhang, D.J., Liu, X.Y., Jia, X., An, C.B., Ma, M.M., Xie, Y.W., Barton, L., Ren, X.Y., Zhao, Z.J., & Wu, X.H. (2015). Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. SCIENCE, 347, 248-250. The Qinghai-Tibet Plateau, with an average altitude of more than 4000m, is the highestand largest plateau all around the world, and also is one of the most unsuitable areas for human life with long-term on the earth. The remains at the archaeological site are direct evidences left behind the ancient human activities. The original data of this data is digitized from the results of the Qinghai-Tibet Plateau high-textual census and archaeological survey (Qinghai Volume and Tibet Volume of the Chinese Cultural Relics Atlas). The map was digitized mainly based on the distribution maps of the sites, and the latitude and longitude coordinates and altitude were obtained. a total of 6,950 sites, most of which are distributed in the northern part of the plateau. The age range of the site is between 7000BP and 2300BP. This data set is of reference value for the research on the process and power of human diffusion to the Tibetan Plateau in the prehistoric era and other studies related to human activities in the Tibetan Plateau and the prehistoric era.
DONG Guanghui , LIU Fengwen
This data set includes a monthly composite of 30 m × 30 m surface vegetation coverage products in the Qilian Mountain Area in 2019. In this paper, the maximum value composition (MVC) method is used to synthesize monthly NDVI products and calculate FVC by using the reflectance data of Landsat 8 and sentinel 2 red and near infrared channels. The data is monthly synthesized by Google Earth engine cloud platform, and the index is calculated by the model. The missing pixels are interpolated with good quality, which can be used in environmental change monitoring and other fields.
QI Xuebin
The data includes the runoff components of the main stream and four tributaries in the source area of the Yellow River. In 2014-2016, spring, summer and winter, based on the measurement of radon and tritium isotopic contents of river water samples from several permafrost regions in the source area of the Yellow River, and according to the mass conservation model and isotope balance model of river water flow, the runoff component analysis of river flow was carried out, and the proportion of groundwater supply and underground ice melt water in river runoff was preliminarily divided. The quality of the data calculated by the model is good, and the relative error is less than 20%. The data can provide help for the parameter calibration of future hydrological model and the simulation of hydrological runoff process.
QI Xuebin
1) Data content: this data is the placenta umbilical cord endothelial cells (HUVEC) transcriptome data of high altitude Tibetan and lowland Han population generated during the implementation of the project, including the RNA-seq data of 3 high altitude Tibetan HUVEC and 3 lowland Han placenta HUVEC. Each RNA-seq data is 6G sequencing depth, which can be used to study the effect of high altitude Tibetan population and lowland Han population for gene expression patterns at hypoxic environment. 2) Data source and processing method: own data, the pair end 150bp sequencing method using Illumina x-ten sequencing platform. 3) Data quality: 6G data depth, q30 > 90%. 4) Results and prospects of data application: the data will be used to validate the gene expression pattern of high altitude hypoxia adaptation gene to hypoxia environment at the cell level.
QI Xuebin
The average altitude of the Tibetan Plateau is more than 4000 meters. The harsh environment such as high cold and low oxygen poses a huge challenge to human survival. However, since the late Paleolithic period, Tibetan people in the plateau have reached the Plateau, and in the Neolithic period, people began to permanently settled on the high-altitude areas on a large scale. The history of population migration in this process has become the focus of different fields. In order to analyze the genetic structure of Tibetan population from the perspective of the whole genome and trace back the history of human settlement on the plateau, we obtained the whole genome variation data of 20 Tibetan individuals. The SNP typing of 20 samples was carried out by DNA array method, and about 700000 loci (including nuclear genome, mitochondrial DNA and Y chromosome) of each sample were obtained. Based on the above data, relevant biological information analysis (mainly including chip site quality control analysis, Y chromosome and mitochondrial DNA haplotype analysis) was carried out. This data is helpful to analyze the genetic structure of Tibetan population from the perspective of nuclear genome, Y chromosome and mitochondrial DNA. By comparing with the data of people around the plateau, we can trace the migration and settlement history of the plateau population comprehensively.
KONG Qingpeng
According to the characteristics of the Qinghai Tibet Plateau and the principles of scientificity, systematization, integrity, operability, measurability, conciseness and independence, the human activity intensity evaluation index system suitable for the Qinghai Tibet Plateau has been constructed, which mainly includes the main human activities such as agricultural and animal husbandry activities, industrial and mining development, urbanization development, tourism activities, major ecological engineering construction, pollutant discharge, etc, On the basis of remote sensing data, ground observation data, meteorological data and social statistical yearbook data, the positive and negative effects of human activities are quantitatively evaluated by AHP, and the intensity and change characteristics of human activities are comprehensively evaluated. The data can not only help to enhance the understanding of the role of human activities in the vegetation change in the sensitive areas of global change, but also provide theoretical basis for the sustainable development of social economy in the Qinghai Tibet Plateau, and provide scientific basis for protecting the ecological environment of the plateau and building a national ecological security barrier.
ZHANG Haiyan, XIN Liangjie, FAN Jiangwen, YUAN Xiu
The data includes 30 items of data in four categories: basic information, comprehensive economy, agriculture and industry, education, health and social security in Qinghai Province and Tibet Autonomous Region. It covers the basic data reflecting human activities, such as population, employees, industrial output value, agricultural machinery power, facility agriculture, etc. of the main county administrative units of the Qinghai Tibet Plateau. The data are sorted out according to the statistical yearbook data of China's counties from 2001 to 2018. For the convenience of application, the data of Qinghai and Tibet are independently tabulated and included in the data of each year. The data can be used to analyze human activities and social and economic development in the county, as well as agricultural and rural development and change process.
This dataset is the population index, which includes the dataset of Qinghai Province and Tibet Autonomous Region. It can be used for the coupling coordination relationship between urbanization and eco-environment in Qinghai-Tibet Plateau. The time span in Tibet Autonomous Region is 1995-2016. Permanent residents is based on the population census and the annual population change sampling survey. In addition to the total permanent population, the data were also calculated by gender and urban and rural areas. The time span is from 1952 to 2015 in Qinghai Province, and the indices are resident population, birth, death and natural increase. All data is from the statistical yearbook.
DU Yunyan
This data set contains statistical tables on the community situation of each county in Three-River-Source National Park. The specific contents include: Table 1 includes: number of administrative villages, number of natural villages, number of households, population, number of rural labor force, total value of primary and secondary industries, net income per capita, and number of livestock. Table 2 includes: the ethnic composition of the population (population of each ethnic group), education-related statistics (number of primary and secondary schools and number of students), health-related statistics (number of hospitals, health rooms and medical personnel), and statistics on the education level of the population (number of people with different education levels); Table 3 includes: the grassland (total grassland area, usable grassland area, moderately degraded area and grassland vegetation coverage), woodland (total area, arbor forest area, shrub forest area and sparse forest area), water area (total area, river area, lake area, glacier area, snowy mountain area and wetland area). A total of four counties were designed: Maduo, Qumalai, Zaduo and Zhiduo. This data comes from statistics of government departments.
National Bureau of Statistics
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn