This section was measured in the north of the Minzhuochaka Lake in the Nagri region. We collected and studied the fusulines, conodonts and smaller foraminifers from the Strata. The conodonts are dominated by Sweetognathus and Mesogondolella species. The fusulines are dominated by Neoschwagerina, Pseudodoliolina, Mesoschubertella. The smaller foraminifers consist mainly of Pachyphloia, Langella, Palaeotextularia and Tetrataxis. From the viewpoint of conodonts, their age is Kungurian. From the viewpoint of fusulines, it suggests a Murgabian age. The coexistence of fusulines and conodonts suggests that the upper Kungurian of International Scale correspond to the Murgabian of Tethyan Scale. This has provided robust evidence to support a correct correlation between the global scale and Tethyan scale of the Permian stage. In paleobiogeography, the present of conodonts and fusulines in the section suggests that the South Qiangtang Block was in a warm-water environment during the Kungurian time. By contrast, the Kungurian faunas in the Lhasa Block are dominated by cool-water taxa without any warm-water fusulines. The discovery of both conodonts and fusulines suggest a different paleobiogeography between the Lhasa and South Qiangtang blocks during the Kungurian time.
ZHANG Yichun
The data of Cenozoic plant macrofossils on the Qinghai Tibet Plateau includes leaves, seeds and fruits. It includes Latin and Chinese names of families, genera and species, times, places of origin, morphological descriptions, discussions, specimens and references. The species names are assigned according to the original literature. For fossil records revised by later research, the revised records were chosen; The age of the origin (fossil site) is assigned according to the latest literature. The terms and description paradigm of leaf shape description are referred to the book "Leaf Structure Manual"; The length, angle, and other measurement data in the description are derived from the original literature. The fossil records of the document are sorted alphabetically by Latin initials of families and genera. The data can provide important clues for studying the coupling relationship between the environmental climate changed and the evolution of vegetation and plant diversity in the Cenozoic Qinghai Tibetan Plateau.
ZHOU Zhekun , LIU Jia , CHEN Linlin , ROBERT Spicer , LI Shufeng , HUANG Jian , ZHANG Shitao , HUANG Yongjiang , JIA Linbo , HU Jinjin , SU Tao
This set of data includes the Cenozoic biostratigraphy scientific expedition in autumn 2020, relying on the second comprehensive scientific expedition on the Tibetan Plateau Research Task 7 topic 5 "second comprehensive scientific expedition on the Tibetan Plateau, 2019qzk0705" The data content includes image material and field video material. The main shooting equipment is SLR camera, motion camera and UAV. Data is used for documentary production, paper publication and other matters. The data involves original intellectual property rights, and the user must obtain the prior consent of the copyright owner.
SHI Jingsong
The most primitive Elasmotherium (Perissodactyla, Rhinocerotidae) from the Late Miocene of northern China, The origin of Elasmotherium has been a puzzle for many years. Herein, we report the earliest representative of Elasmotherium, based on a Late Miocene skull from Dingbian County in Shaanxi, northwestern China. The skull bears a unique mosaic of primitive and derived features different from all hitherto known elasmotheres, hence forth demarcated as holotype of Elasmotherium primigenium sp. nov. Dental characters of E. primigenium are more primitive than any other known species of lasmotherium, e.g. relatively incipient enamel folding, fairly weak lingual groove on the base of the protocone, relatively weaker crista, small and closed posterior valley and straight ectoloph. E. primigenium is evidently more primitive than all the known species of Elasmotherium, yet appreciably more derived than Sinotherium, thereby marking an important transitional species between Sinotherium and further species of the genus Elasmotherium.
SUN Danhui, DENG Tao
The data include the Cenozoic plant fossils collected from Gansu, Qinghai and Yunnan by the Department of paleontology, School of Geological Sciences and mineral resources, Lanzhou University from 2019 to 2020. All the fossils were collected by the team members in the field and processed in the laboratory by conventional fossil restoration methods and cuticle experiment methods. The fossils are basically well preserved, some of which are horned The study of these plant fossils is helpful to understand the Cenozoic paleoenvironment, paleoclimate, paleogeographic changes and vegetation features of the eastern Qinghai Tibet Plateau.
YANG Tao
The study of fossils in Bangor and Lunpola is of great significance, and the date of fossils is indispensable. There are volcanic tuffs in this area. Zircon can be used for U-Pb age analysis to determine the age of strata and fossils. This data shows the zircon U-Pb age analysis results of tuff samples from bango and Lunpola fossil sites in a graphical way. The figure shows the shape of a large number of zircons, and indicates the age analysis results on different zircon samples. The data show the large sample size used in related research, and the analysis results are also clear. The image display of this data is intuitive and clear, and the results are reliable, which is of great significance to the study of the Qinghai Tibet Plateau.
SUN Boyang
This dataset is derived from the paper: Su, T. et al. (2019). No high tibetan plateau until the Neogene. Science Advances, 5(3), eaav2189. doi:10.1126/sciadv.aav2189 This data contains supplementary material of this article. Researchers discovered well-preserved palm fossil leaves from the Lunpola Basin (32.033°N, 89.767°E), central Tibetan Plateau at a present elevation of 4655 m in 2016. Researchers compared the newly discovered fossil with those present fossil that are most similar, find that there is no similar leaves among present fossil, therefore, researchers proposed the new species <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. Using the climate model, combined with the research of the fossil, researchers rebuilt the paleoelevation of the central Tibetan Plateau, it shows that a high plateau cannot have existed in the core of Tibet in the Paleogene. The data contains the following tables: 1) Table S1. Fossil records of palms around the world. 2) Table S2. Morphological comparisons between fossils from Lunpola Basin and modern palm genera. 3) Table S3. Climate ranges of 12 living genera that show the closest morphological similarity to <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. This dataset also contains the figures in the supplementary material in the article.
SU Tao
This data was illustarted section histogram of Baingoin locality, based on result of geological survey on Tibetan Plateau in recent years. The thickness of stratigraphic level was measured artificially, rock character was identified by well-experienced geological worker. Fossils were discovered and clearly marked in the section. Stratigraphic and lithologic data obtained from geological survey was organized systematically after field work, adding relevant text. The content of data is very detailed, with significance in geological and topographic research in Baingoin locality and Northern Tibetan Plateau, especially in tectonics in plateau uplift and paleo-altimetry.
SUN Boyang
This data is derived from the Supplementary Tables of the paper: Chen, F. H., Welker, F., Shen, C. C., Bailey, S. E., Bergmann, I., Davis, S., Xia, H., Wang, H., Fischer, R., Freidline, S. E., Yu, T. L., Skinner, M. M., Stelzer, S., Dong, G. R., Fu, Q. M., Dong, G. H., Wang, J., Zhang, D. J., & Hublin, J. J. (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569, 409-412. This research is another breakthrough made by academician Fahu Chen and his team over the years research of human activities and environmental adaptation on the Tibetan Plateau. The research team analyzed the newly discovered hominid mandible fossils in Xiahe County, Gansu Province, China, and identified it belongs to Denisovan of the Tibetan Plateau, which suggested to call Xiahe Denisovan. The team conducted a multidisciplinary analysis of the fossil, including chronology, physique morphology, molecular archaeology, living environment and human adaptation. It is the first Denisovan fossil found outside the Denisova Cave in the Altai Mountains and the earliest evidence of human activity on the Tibetan Plateau (160 kyr BP). This study provides key evidence for further study of Denisovans' physical characteristics and distribution in East Asia, it also provides evidence of a deep evolutionary history of these archaic hominins within the challenging environment of the Tibetan Plateau. This data contains 6 tables, table name and contents are as follows: t1: Distances in mm between meshes generated from CT versus photoscans (PS). t2: Measurements of the Xiahe mandible after reconstruction. t3: Comparative Dental metrics. t4: Comparative crown morphology. t5: Uniprot accession numbers for protein sequences of extant primates used in the phylogenetic analyses. t6: Specimen names and numbers.
CHEN Fahu
This dataset is collected from the Supplementary Materials part of the paper "Chen, F.H., Dong, G.H., Zhang, D.J., Liu, X.Y., Jia, X., An, C.B., Ma, M.M., Xie, Y.W., Barton, L., Ren, X.Y., Zhao, Z.J., & Wu, X.H. (2015). Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347, 248–250.". In this paper, researchers analyzed animal bones, plant remains and other artefacts from 53 sites across the northeastern Tibetan plateau and found that humans began to relocate to the elevations above 4000 masl after the emergence of Barley. According to the study, the prehistoric human expansion into the higher, colder altitudes of the Tibetan plateau took place as the continental temperatures had themselves become colder after 3,600 calendar years before the present, thus, the key impetus of the expansion was agricultural innovation rather than climate change. This dataset contains 4 tables, table names and content are as follows: Data list: The data name list of the rest tables; t1: Calibrated radiocarbon dates and domesticated plant and animal remains from sites investigated on the NETP; t2: Radiocarbon dates of the Paleolithic sites on the Tibetan Plateau; t3: OSL dates of the Paleolithic sites on the Tibetan Plateau. See attachments for data details: Supplementary Materials.pdf, Agriculture Facilitated Permanent Human Occupation of the Tibetan Plateau after 3,600 BP.pdf.
CHEN Fahu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn