Land cover refers to the mulch formed by the current natural and human influences on the earth's surface. It is the natural state of the earth's surface, such as forests, grasslands, farmland, soil, glaciers, lakes, swamps and wetlands, and roads. The Land Cover (LC) dataset is original from MODIS products and preprocessed by format conversion, projection and resampling. The existing format is TIFF and projection is Krasovsky_1940_Albers. The data set has a spatial resolution of 1000 meters and provides one image per year during the period from 2002 to 2020. Land cover products were classified into 17 categories defined by the International Geosphere Biosphere Programme (IGBP), including 11 categories of natural vegetation, 3 categories of land use and Mosaic, and 3 categories of non-planting land.
ZHU Juntao
In this study,a vegetation classification system for the vegetation types in the Qinghai-Tibet Plateau was designed. The integrated classification method,taken into account of multi-source vegetation classification / land cover classification products, was used to produce the actual vegetation map. This integrated classification method followed the principle of data consistency,and the resultant vegetation map was superior over other vegetation maps in terms of reflection of current situation, classification system, and classification accuracy. This vegetation map is timely and could better reflect current vegetation distribution than earlier ones. This vegetation map could be conducive to fully extract vegetation information from multi-source data products with high reliability and consistency. Compared with previous data products,the overall accuracy (78.09%,kappa coefficient is 0.75) of this new vegetation map was found to increase by 18.84%-37.17%,especially for grassland and shrub.
ZHANG Hui, ZHAO Cenliang, ZHU Wenquan
This dataset was captured during the field investigation of the Qinghai-Tibet Plateau in June 2021 using uav aerial photography. The data volume is 3.4 GB and includes more than 330 aerial photographs. The shooting locations mainly include roads, residential areas and their surrounding areas in Lhasa Nyingchi of Tibet, Dali and Nujiang of Yunnan province, Ganzi, Aba and Liangshan of Sichuan Province. These aerial photographs mainly reflect local land use/cover type, the distribution of facility agriculture land, vegetation coverage. Aerial photographs have spatial location information such as longitude, latitude and altitude, which can not only provide basic verification information for land use classification, but also provide reference for remote sensing image inversion of large-scale regional vegetation coverage by calculating vegetation coverage.
LV Changhe, ZHANG Zemin
According to the distribution of cultivated land in 18 districts and counties in the "One River and Two Tributaries" region of Tibet Autonomous Region, a 5km × 5km grid was adopted, covering all cultivated land and greenhouse land. A total of 1092 5km × 5km grids were set up, and each grid contains a number. Data processing method: the fishnet tool in ArcGIS 10.3 is used to generate the grid covering the administrative boundaries of 18 districts and counties in the "one river, two rivers" region of Tibet Autonomous Region, and then the intersect tool is used to generate the grid covering cultivated land. The data can be used to collect soil samples of cultivated land in "One River and Two Tributaries" area of Tibet Autonomous Region.
GONG Dianqing
The dataset is the land cover of Qing-Tibet Plateau in 2014. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
DU Yunyan
This dataset is the spatial distribution map of the marshes in the source region of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30 m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
WANG Guangjun
These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) (http://www.globallandcover.com) and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.
CHEN Jun
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn