The basic data of hydrometeorology, land use and DEM were collected through the National Meteorological Information Center, the Hydrological Yearbook, the China Statistical Yearbook and the Institute of Geographic Sciences and Resources of the Chinese Academy of Sciences. The distributed time-varying gain hydrological model with independent intellectual property rights is used for modeling, and the Qinghai Tibet Plateau is divided into 10937 sub basins with a threshold of 100 square kilometers. In Heihe River, Yarlung Zangbo River, the source of Yangtze River, the source of Yellow River, Yalong River, Minjiang River and Lancang River basins, 14 flow stations were selected to observe the daily flow data to develop and verify the model. The daily scale Naxi efficiency coefficient is above 0.7, and the correlation coefficient is above 0.8. The precipitation and temperature data output from 13 models and 4 scenarios provided by CMIP6 are used to post process the future precipitation and temperature data. The post processed precipitation and temperature driven hydrological model simulates the water cycle process from 2046 to 2065, and gives the possible future spatial and temporal distribution of 0.1 degree daily scale runoff across the Qinghai Tibet Plateau.
YE Aizhong
The basic data of hydrometeorology, land use and DEM were collected through the National Meteorological Information Center, the hydrological Yearbook, the China Statistical Yearbook and the Institute of geographical science and resources of the Chinese Academy of Sciences. The distributed time-varying gain hydrological model (DTVGM) with independent intellectual property rights is adopted for modeling, and the Qinghai Tibet Plateau is divided into 10937 sub basins with a threshold of 100 square kilometers. The daily flow data of 14 flow stations in Heihe River, Yarlung Zangbo River, Yangtze River source, Yellow River source, Yalong River, Minjiang River and Lancang River Basin were selected to draft and verify the model. The daily scale Naxi efficiency coefficient is above 0.7 and the correlation coefficient is above 0.8. The actual evaporation simulation is basically consistent with the station observation published by the Meteorological Bureau. The model simulates the water cycle process from 1998 to 2017. After verification, the spatial and temporal distribution of the actual evaporation (including soil evaporation and plant transpiration) on the 0.01 degree daily scale in the whole Tibetan Plateau is given.
YE Aizhong
Normalized Difference Vegetation Index (NDVI) has been widely used for monitoring vegetation. This dataset employed all available Landsat 5/7/8 data on the Qinghai-Tibetan Plateau (QTP) (> 100,000 scenes), and reconstructed high spatiotemporal NDVI time-series data (30-m and 8-d) during 2000-2020 on the TP (QTP-NDVI30) by using the MODIS-Landsat fusion algorithm (gap filling and Savitzky–Golay filtering;GF-SG). For the details of GF-SG, please refer to Chen et al. (2021). This dataset has been evaluated carefully. The quantitative assessments show that the reconstructed NDVI images have an average MAE value of 0.02, correlation coefficient of 0.96, and SSIM value of 0.94. We compared the reconstructed images in some typical areas with the PlanetScope 3-m images and found that the spatial details were well preserved by QTP-NDVI30. The geographic coordinate system of this dataset is GCS_WGS_84. The spatial range covers the vegetation area of the QTP, which is defined as the areas with average NDVI during July- September larger than 0.15.
CAO Ruyin , XU Zichao , CHEN Yang , SHEN Miaogen , CHEN Jin
The data set is the watershed scale erosion rate of the eastern Tibet Based on 10Be. The data includes the first author, publication year, longitude and latitude and erosion rate. The data were collected in published journal articles, and the data has significant spatial distribution characteristics, and different research results are consistent with each other. The spatial characteristics of basin-wide erosion rate are always related to river geomorphic characteristics (such as steepness), climate and tectonic activities. Therefore, the systematic data set can provide important data support for the analysis of the main controlling factors of regional erosion rate , making it possible to quantify the contribution of climate and structure to the surface process in the region.
ZHANG Huiping
In situ stress refers to the stress existing in the earth's crust, that is, the force per unit area in the medium caused by rock deformation. This topic obtains in-situ stress data of major engineering areas through literature collection and borehole test in major engineering areas of Qinghai Tibet Plateau. The accuracy of the original data is reliable, and a special person is responsible for the quality review; After review by many people, the data integrity, position accuracy and attribute accuracy meet the requirements of relevant technical regulations and standards, and the quality is excellent and reliable. This data can provide basic data support for the study of the development law of major engineering disturbance disasters and major natural disasters in the Qinghai Tibet Plateau and other research work related to in-situ stress.
QI Shengwen
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn