This dataset was captured during the field investigation of the Qinghai-Tibet Plateau in June 2021 using uav aerial photography. The data volume is 3.4 GB and includes more than 330 aerial photographs. The shooting locations mainly include roads, residential areas and their surrounding areas in Lhasa Nyingchi of Tibet, Dali and Nujiang of Yunnan province, Ganzi, Aba and Liangshan of Sichuan Province. These aerial photographs mainly reflect local land use/cover type, the distribution of facility agriculture land, vegetation coverage. Aerial photographs have spatial location information such as longitude, latitude and altitude, which can not only provide basic verification information for land use classification, but also provide reference for remote sensing image inversion of large-scale regional vegetation coverage by calculating vegetation coverage.
LV Changhe, ZHANG Zemin
The supply capacity of land resources is an important index to determine the carrying capacity of land resources. The data set includes: (1) the supply capacity of cultivated land resources in the Qinghai Tibet Plateau; (2) Data on grassland resource supply capacity of Qinghai Tibet Plateau. The supply capacity of cultivated land resources is based on the output of main agricultural products of Tibet Bureau of statistics, and summarizes the output of grain, meat, eggs and dairy livestock products at key nodes; The grassland resource supply capacity is based on the grassland area and livestock quantity data of Tibet Bureau of statistics, combined with field sampling data and climate data, and based on the aboveground biomass model to calculate the average biomass and total biomass of grassland in typical counties at key nodes. The data can be used to analyze the spatial difference of land supply capacity of the Qinghai Tibet Plateau, which is of great significance to the study of land carrying capacity of the Qinghai Tibet Plateau.
YANG Yanzhao
The data sources of this dataset mainly include domestic satellite images such as HJ-1A/B, GF-1/2, ZY-3, and Landsat TM/ETM+/OLI series satellite image data. Using the domestic satellite images supplemented by Google Earth images to generate the component training sample and validation sample data of different geographical divisions. Using Google Earth Engine (GEE) to test and correct the model algorithm parameters. The normalized settlement density index (NSDI) is obtained based on random forest algorithm, Landsat TM/ETM+/OLI series satellite images and auxiliary data. The vector boundary of urban built-up area is obtained by density segmentation method after manual interactive interpretation and correction. The NSDI, vegetation coverage index and vector boundary of the Tibetan Plateau are used to produce the original data of urban impervious surface and urban green space fractions in the Tibetan Plateau. After correction and accuracy evaluation, the datasets of urban impervious surface area and green space fractions in the Tibetan Plateau from 2000 to 2020 are generated. The resolution of the data product is 30 m, and the coordinate system and storage format of the data files are unified. The geographic coordinate system is WGS84, the projected coordinate system is Albers, and the data storage format is GeoTIFF, the data unit is percentage (the value range is 0~10000), and the scale factor is 0.01. In order to quantify the change of urban land cover more accurately, samples from several typical cities are selected to verify the dataset. The specific verification methods and accuracy are shown in the published results. The data can be used to analyze and reveal the impact of land cover change and future scenario simulation on the Tibetan Plateau, to provide a scientific basis for building environmentally livable cities and improving the quality of human settlements on the Tibetan Plateau.
KUANG Wenhui, GUO Changqing, DOU Yinyin
As the roof of the world, the water tower of Asia and the third pole of the world, the Qinghai Tibet Plateau is an important ecological security barrier for China and even Asia. With the rapid development of social economy, human activities have increased significantly, and the impact on the ecological environment is growing. In this paper, eight factors including cultivated land, construction land, National Road, provincial road, railway, expressway, GDP and population density were selected as the threat factors, and the attributes of the threat factors were determined based on the expert scoring method to evaluate the habitat quality of the Qinghai Tibet Plateau, so as to obtain six data sets of the habitat quality of the agricultural and pastoral areas of the Qinghai Tibet Plateau in 1990, 1995, 2000, 2005, 2010 and 2015. The production of habitat quality data sets will help to explore the habitat quality of the Qinghai Tibet Plateau and provide effective support for the government to formulate sustainable development policies of the Qinghai Tibet Plateau.
LIU Shiliang, LIU Yixuan, SUN Yongxiu, LI Mingqi
To collect, integrate and integrate data and information on human activities, geographical conditions, environmental quality, natural disasters, medical and health care, and natural resources in the Qinghai Tibet Plateau( Meteorological data (air temperature, air pressure, wind speed, precipitation, evaporation, sunshine hours, air humidity) from 1980 to 2019, air oxygen content, solar radiation, 4 million digital landform data set, soil erosion, concentration data set of soil persistent organic pollutants in Qinghai Tibet Plateau, natural disasters, medical resources, economic data in Tibet and Qinghai Water resources data of Qinghai Tibet Plateau (1990, 1995, 2000, 2005, 2010, etc.)
Topographic relief is a comprehensive representation of regional altitude and surface cutting degree. Based on the definition and calculation formula of topographic relief under the background of China's human settlements assessment, the digital elevation model (Aster GDEM 30 m) data is resampled into 1 km, The data set includes: (1) kilometer grid spatial data of Tibetan Plateau topographic relief( 2) Terrain suitability evaluation data of Qinghai Tibet Plateau. The data can be used to analyze the spatial difference of topographic relief of the Qinghai Tibet Plateau, which is of great significance to the study of human settlements and Natural Suitability of the Qinghai Tibet Plateau.
XIAO Chiwei, LI Peng,
The data set is mainly included the population, arable land and animal husbandry data of Qinghai Province and Tibet Autonomous Region in the past 100 years. The data mainly comes from historical documents and modern statistics. The data quality is more reliable. It mainly provides arguments for the majority of researchers in the development of agriculture and animal husbandry on the Qinghai-Tibet Plateau.
LIU Fenggui
The data set was obtained from UAV aerial photography during the field investigation of the Qinghai Tibet Plateau in August 2020. The data size is 10.1 GB, including more than 11600 aerial photos. The shooting sites mainly include Lhasa, Shannan, Shigatse and other areas along the road, residential areas and surrounding areas. The aerial photos mainly reflect the local land use / cover type, facility agriculture distribution, grassland coverage and other information. The aerial photos have longitude, latitude and altitude information, which can provide better verification information for land use / cover remote sensing interpretation, and can also be used for vegetation coverage estimation, and provide better reference information for land use research in the study area.
LV Changhe, LIU Yaqun
The natural resources dataset of the Qinghai-Tibetan Plateau covers 215 counties in this area. The observation intervals are 5 years from 2000-2015. The indicators are rainfall, temperature, humidity, population, and land area. The data sources are meteorological station data, regional statistical yearbook, etc., which are expressed by Excel. This data provides a reference for understanding the natural background conditions on the county scale in the Qinghai Tibet Plateau.
FENG Xiaoming
The natural resources dataset of the Qinghai-Tibetan Plateau covers 215 counties in this area. The observation intervals are 5 years from 2000-2015. The indicators are rainfall, temperature, humidity, population, and land area. The data sources are meteorological station data, regional statistical yearbook, etc., which are expressed by Excel. This data provides a reference for understanding the natural background conditions on the county scale in the Qinghai Tibet Plateau.
FENG Xiaoming
This dataset subsumes sustainable livestock carrying capacity in 2000, 2010, and 2018 and overgrazing rate in 1980, 1990, 2000, 2010, and 2017 at county level over Qinghai Tibet Plateau. Based on the NPP data simulated by VIP (vehicle interface process), an eco hydrological model with independent intellectual property of the institute of geographic sciences and nature resources research(IGSNRR), Chinese academy of Sciences(CAS), the grass yield data (1km resolution) is obtained. Grass yield is then calculated at county level, and corresponding sustainable livestock carring capacity is calculated according to the sustainable livestock capacity calculation standard of China(NY / T 635-2015). Overgrazing rate is calculated based on actual livestock carring capacity at county level.The dataset will provide reference for grassland restoration, management and utilization strategies.
MO Xingguo
The data set is obtained by UAV aerial photography during five field visits to the Qinghai Tibet Plateau in 2018-2019. The data size is 77.6 GB, including more than 11600 aerial photos. The aerial film was shot in five times, from July 19, 2018 to July 26, 2018, September 9, 2018 to September 16, 2018, April 24, 2019 to May 10, 2019, July 6, 2019 to July 20, 2019, September 1, 2019 to September 7, 2019. The shooting location mainly includes the roads and surrounding areas between major cities in Lhasa, shigaze, Naqu, Shannan, Linzhi, Changdu, Diqing, Ganzi, ABA, Gannan and Golog. The aerial photos clearly reflect the local land use / cover type, vegetation distribution, grassland degradation, vegetation coverage, river and lake distribution and other information. The aerial photos have longitude and latitude and altitude information, which can provide better verification information for the remote sensing interpretation of land use / cover, and also can be used for the estimation of vegetation coverage, and for the study of land use in the study area Good reference information is provided.
LV Changhe, LIU Yaqun
The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.
DONG Lingxiao
In this study, the cultivated land, forest land and grassland of the Qinghai Tibet Plateau in 2015 were taken as the evaluation objects to analyze the terrain, climate, soil and vegetation factors (terrain: altitude, slope; climate: sunshine hours, ≥ 0 ℃ accumulated temperature, annual average precipitation; soil: soil texture, soil erosion intensity, soil layer thickness; vegetation: vegetation type, NDVI) that have significant impact on land sensitivity and establish agriculture Land sensitivity evaluation index system. Using AHP method to determine the weight of evaluation factors, according to the ArcGIS Jerks classification method to get the sensitivity level of cultivated land, forest land and grassland, output 250m resolution of the Qinghai Tibet Plateau agricultural land sensitivity map, and verify the results.
YAO Minglei
According to the characteristics of the Qinghai Tibet Plateau and the principles of scientificity, systematization, integrity, operability, measurability, conciseness and independence, the human activity intensity evaluation index system suitable for the Qinghai Tibet Plateau has been constructed, which mainly includes the main human activities such as agricultural and animal husbandry activities, industrial and mining development, urbanization development, tourism activities, major ecological engineering construction, pollutant discharge, etc, On the basis of remote sensing data, ground observation data, meteorological data and social statistical yearbook data, the positive and negative effects of human activities are quantitatively evaluated by AHP, and the intensity and change characteristics of human activities are comprehensively evaluated. The data can not only help to enhance the understanding of the role of human activities in the vegetation change in the sensitive areas of global change, but also provide theoretical basis for the sustainable development of social economy in the Qinghai Tibet Plateau, and provide scientific basis for protecting the ecological environment of the plateau and building a national ecological security barrier.
ZHANG Haiyan, XIN Liangjie, FAN Jiangwen, YUAN Xiu
This data set is the data set of land resource elements in the Qinghai Tibet Plateau from 1990 to 2015. It records the change of land use proportion of 15 built-up areas of prefecture level units in Qinghai and Tibet every five years. The data is excel file, and the spatial resolution is the scale of prefecture level administrative unit. This data is based on the land use type data of the Qinghai Tibet Plateau, and is obtained by calculating the proportion of the built-up area in the area of each grade unit to the area of the grade unit. The data set can be used to study the spatial pattern, development process and evolution mechanism of the urbanization of the Qinghai Tibet Plateau, and provide data support for the study of the impact of the urbanization of the Qinghai Tibet Plateau on the ecological environment.
DU Yunyan, YI Jiawei
The dataset is the land cover of Qing-Tibet Plateau in 2015. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
DU Yunyan
The dataset is the land cover of Qing-Tibet Plateau in 2011. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
DU Yunyan
The dataset is the land cover of Qing-Tibet Plateau in 2012. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
DU Yunyan
The Tibetan Plateau in China covers six provinces including Tibet, Qinghai, Xinjiang, Yunnan, Gansu and Sichuan, including Tibet and Qinghai, as well as parts of Xinjiang, Yunnan, Gansu and Sichuan. The research on water and soil resources matching aims to reveal the equilibrium and abundance of water resources and land resources in a certain regional scale. The higher the level of consistency between regional water resources and the allocation of cultivated land resources, the higher the matching degree, and the superior the basic conditions of agricultural production. The general agricultural water resource measurement method based on the unit area of cultivated land is used to reflect the quantitative relationship between the water supply of agricultural production in the study area and the spatial suitability of cultivated land resources. The Excel file of the data set contains the generalized agricultural soil and water resource matching coefficient data of the Tibetan Plateau municipal administrative region in China from 2008 to 2015, the vector data is the boundary data of the Tibetan Plateau municipal administrative region in China in 2004, and the raster data pixel value is the generalized agricultural soil and water resource matching coefficient of the year in the region.
DONG Qianjin, DONG Lingxiao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn