This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2021. The dataset was produced by utilizing the optimized wavelet-coupled-RF downscaling model (RF-OWCM) to downscale the SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture (SMAP L3, V8). The auxiliary datasets participating in the downscaling model include the MUltiscale Satellite remotE Sensing (MUSES) LAI/FVC product, the daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST-TP;) and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
This dataset provides the monitoring data of runoff, precipitation and temperature of the Duodigou Runoff Experimental Station located in the northern suburbs of Lhasa city. Among the dataset, there are two runoff monitoring stations, which provide discharge data from June to December 2019, with a data step of 10 minutes. There are five precipitation monitoring stations, which provide precipitation data from 2018 to 2021, with a data step of 1 day. There are eight air temperature monitoring stations, which provide air temperature data from 2018 to 2021 in 30 minute steps. The discharge, the precipitation and the temperature data are the measured values. The dataset can provide data support for the study of hydrological and meteorological processes in the Tibet Plateau.
LIU Jintao
This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2020. The dataset was produced by utilizing the optimized wavelet-coupled-RF downscaling model (RF-OWCM) to downscale the SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture (SMAP L3, V8). The auxiliary datasets participating in the downscaling model include GLASS Albedo, MUSES LAI/FVC, Daily 1-km all-weather land surface temperature dataset for Western China (TRIMS LST-TP; 2000-2021) V2 and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
This dataset is the water balance dataset in the Yellow River source region and Qilian Mountains in the future 50 years (runoff, precipitation, evapotranspiration, soil liquid water content). It is simulated by the Geomorphology-Based Ecohydrological Model (GBEHM). The variables in the dataset include monthly runoff, monthly precipitation, monthly evapotranspiration, the monthly average 5cm soil liquid water content and the monthly average 50cm soil liquid water content. The temporal range is 2020-2070 and the spatial resolution is 1 km. The input data of the model include meteorological forcings, vegetation, soil and land use data, and the meteorological forcings are obtained from the ensemble mean of 38 CMIP6 models under SSP2-4.5 scenario. The simulation results can reflect the spatio-temporal changes of the hydrological variables in the Yellow River source region and Qilian Mountains. The dataset can be further used for researches into the eco-hydrological processes in the Yellow River source region and Qilian Mountains, and help provide a scientific basis for the optimal allocation of " mountains, rivers, forests, farmlands, lakes and grasslands " system.
WANG Taihua, YANG Dawen
This dataset is the water balance dataset in the Yellow River source region and Qilian Mountains in the past 40 years (runoff, precipitation, evapotranspiration, soil liquid water content). It is simulated by the Geomorphology-Based Ecohydrological Model (GBEHM). The variables in the dataset include monthly runoff, monthly precipitation, monthly evapotranspiration, the monthly average 5cm soil liquid water content and the monthly average 50cm soil liquid water content. The temporal range is 1980-2019 and the spatial resolution is 1 km. The input data of the model include meteorological forcings, vegetation, soil and land use data. The simulation results can reflect the spatio-temporal changes of the hydrological variables in the Yellow River source region and Qilian Mountains. The dataset can be further used for researches into the eco-hydrological processes in the Yellow River source region and Qilian Mountains, and help provide a scientific basis for the optimal allocation of " mountains, rivers, forests, farmlands, lakes and grasslands " system.
WANG Taihua, YANG Dawen
The data include four types: water levels of 244 lakes extracted in CryoSat-2 L1B Baseline D (2010-2020); water levels of 356 lakes extracted in ICESat-2 ATL13 (2018-2020); water levels of 125 lakes extracted in Sentinel-3A SRAL L2 (2016- 2020); water levels in 120 lakes extracted from Sentinel-3B SRAL L2 (2018-2020). Data include date, decimal date, water level, standard deviation, and geographic location of each lake. Please see the paper for detailed data processing procedures.
XU Fenglin, ZHANG Guoqing
The SZIsnow dataset was calculated based on systematic physical fields from the Global Land Data Assimilation System version 2 (GLDAS-2) with the Noah land surface model. This SZIsnow dataset considers different physical water-energy processes, especially snow processes. The evaluation shows the dataset is capable of investigating different types of droughts across different timescales. The assessment also indicates that the dataset has an adequate performance to capture droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is evident over snow-covered areas (e.g., Arctic region) and high-altitude areas (e.g., Tibet Plateau). Moreover, the analysis also implies that SZIsnow dataset is able to well capture the large-scale drought events across the world. This drought dataset has high application potential for monitoring, assessing, and supplying information of drought, and also can serve as a valuable resource for drought studies.
WU Pute, TIAN Lei, ZHANG Baoqing
The Tibet-Obs established in 2008 consists of three regional-scale soil moisture (SM) monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface SM dataset includes the original 15-min in situ measurements collected at a depth of 5 cm by multiple SM monitoring sites of all the networks, and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
ZHANG Pei, ZHENG Donghai, WEN Jun, ZENG Yijian, WANG Xin, WANG Zuoliang, MA Yaoming, SU Zhongbo
This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2019. The dataset was produced by utilizing the optimized wavelet-coupled-RF downscaling model (RF-OWCM) to downscale the “AMSR-E and AMSR2 TB-based SMAP Time-Expanded Daily 0.25°×0.25° Land Surface Soil Moisture Dataset in Qilian Mountain Area (SMsmapTE, V1)”. The auxiliary datasets participating in the downscaling model include GLASS Albedo/LAI/FVC, Thermal and Reanalysis Integrating Medium-resolution Spatial-seamless LST – Tibetan Plateau (TRIMS LST-TP) by Ji Zhou and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
This dataset provides the in-situ lake water parameters of 124 closed lakes with a total lake area of 24,570 km2, occupying 53% of the total lake area of the TP.These in-situ water quality parameters include water temperature, salinity, pH,chlorophyll-a concentration, blue-green algae (BGA) concentration, turbidity, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), and water clarity of Secchi Depth (SD).
ZHU Liping
This data set includes the statistical data of water resources in Tibet and Qinghai. The data comes from Tibet water resources bulletin and Qinghai water resources bulletin. The statistical scale is the municipal unit scale, including Xining City, Haidong City, Haibei Prefecture, Hainan prefecture, Huangnan Prefecture, Guoluo Prefecture, Yushu prefecture and Haixi Prefecture in Qinghai Province, Lhasa, Changdu, Shannan, Shigatse, Naqu and other municipal units in Tibet Ali, Linzhi and other municipal units; Variables include annual precipitation, surface water resources, groundwater resources, repeated calculation, total water resources, per capita water resources, water production modulus, surface water supply, groundwater supply, total water supply, agricultural water consumption, industrial water consumption, domestic water consumption, ecological environment water consumption and total water consumption. The data set can be used in the fields of water resources management and ecological environment protection in the Qinghai Tibet Plateau.
LIU Zhaofei, YAO Zhijun
Terrestrial actual evapotranspiration (ETa) is an important component of terrestrial ecosystems because it links the hydrological, energy, and carbon cycles. However, accurately monitoring and understanding the spatial and temporal variability of ETa over the Tibetan Plateau (TP) remains very difficult. Here, the multiyear (2000-2018) monthly ETa on the TP was estimated using the MOD16-STM model supported by datasets of soil properties, meteorological conditions, and remote sensing. The estimated ETa correlates very well with measurements from 9 flux towers, with low root mean square errors (average RMSE = 13.48 mm/month) and mean bias (average MB = 2.85 mm/month), and strong correlation coefficients (R = 0.88) and the index of agreement values (IOA = 0.92). The spatially averaged ETa of the entire TP and the eastern TP (Lon > 90°E) increased significantly, at rates of 1.34 mm/year (p < 0.05) and 2.84 mm/year (p < 0.05) from 2000 to 2018, while no pronounced trend was detected on the western TP (Lon < 90°E). The spatial distribution of ETa and its components were heterogeneous, decreasing from the southeastern to northwestern TP. ETa showed a significantly increasing trend in the eastern TP, and a significant decreasing trend throughout the year in the southwestern TP, particularly in winter and spring. Soil evaporation (Es) accounted for more than 84% of ETa and the spatial distribution of temporal trends was similar to that of ETa over the TP. The amplitudes and rates of variations in ETa were greatest in spring and summer. The multi-year averaged annual terrestrial ETa (over an area of 2444.18×103 km2) was 376.91±13.13 mm/year, equivalent to a volume of 976.52±35.7 km3/year. The average annual evapotranspirated water volume over the whole TP (including all plateau lakes, with an area of 2539.49×103 km2) was about 1028.22±37.8 km3/year. This new estimated ETa dataset is useful for investigating the hydrological impacts of land cover change and will help with better management of watershed water resources across the TP.
MA Yaoming, CHEN Xuelong,
In this study, an algorithm that combines MODIS Terra and Aqua (500 m) and the Interactive Multisensor Snow and Ice Mapping System (IMS) (4 km) is presented to provide a daily cloud-free snow-cover product (500 m), namely Terra-Aqua-IMS (TAI). The overall accuracy of the new TAI is 92.3% as compared with ground stations in all-sky conditions; this value is significantly higher than the 63.1% of the blended MODIS Terra-Aqua product and the 54.6% and 49% of the original MODIS Terra and Aqua products, respectively. Without the IMS, the daily combination of MODIS Terra-Aqua over the Tibetan Plateau (TP) can only remove limited cloud contamination: 37.3% of the annual mean cloud coverage compared with the 46.6% (MODIS Terra) and 55.1% (MODIS Aqua). The resulting annual mean snow cover over the TP from the daily TAI data is 19.1%, which is similar to the 20.6% obtained from the 8-day MODIS Terra product (MOD10A2) but much larger than the 8.1% from the daily blended MODIS Terra-Aqua product due to the cloud blockage.
ZHANG Guoqing
The data set includes annual mass balance of Naimona’nyi glacier (northern branch) from 2008 to 2018, daily meteorological data at two automatic meteorological stations (AWSs) near the glacier from 2011 to 2018 and monthly air temperature and relative humidity on the glacier from 2018 to 2019. In the end of September or early October for each year , the stake heights and snow-pit features (snow layer density and stratigraphy) are manually measured to derive the annual point mass balance. Then the glacier-wide mass balance was then calculated (Please to see the reference). Two automatic weather stations (AWSs, Campbell company) were installed near the Naimona’nyi Glacier. AWS1, at 5543 m a. s.l., recorded meteorological variables from October 2011 at half hourly resolution, including air temperature (℃), relative humidity (%), and downward shortwave radiation (W m-2) . AWS2 was installed at 5950 m a.s.l. in October 2010 at hourly resolution and recorded wind speed (m/s), air pressure (hPa), precipitation (mm). Data quality: the quality of the original data is better, less missing. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. Two probes (Hobo MX2301) which record air temperature and relative humidity was installed on the glacier at half hour resolution since October 2018. The observed meteorological data was calculated as monthly values. The data is stored in Excel file. It can be used by researchers for studying the changes in climate, hydrology, glaciers, etc.
ZHAO Huabiao
We comprehensively estimated water volume changes for 1132 lakes larger than 1 km2. Overall, the water mass stored in the lakes increased by 169.7±15.1 Gt (3.9±0.4 Gt yr-1) between 1976 and 2019, mainly in the Inner-TP (157.6±11.6 or 3.7±0.3 Gt yr-1). A substantial increase in mass occurred between 1995 and 2019 (214.9±12.7 Gt or 9.0±0.5 Gt yr-1), following a period of decrease (-45.2±8.2 Gt or -2.4±0.4 Gt yr-1) prior to 1995. A slowdown in the rate of water mass increase occurred between 2010 and 2015 (23.1±6.5 Gt or 4.6±1.3 Gt yr-1), followed again by a high value between 2015 and 2019 (65.7±6.7 Gt or 16.4±1.7 Gt yr-1). The increased lake-water mass occurred predominately in glacier-fed lakes (127.1±14.3 Gt) in contrast to non-glacier-fed lakes (42.6±4.9 Gt), and in endorheic lakes (161.9±14.0 Gt) against exorheic lakes (7.8±5.8 Gt) over 1976−2019.
ZHANG Guoqing
This dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. ELBARA-III horizontal and vertical brightness temperature are computed from measured radiometer voltages and calibrated internal noise temperatures. The data is reliable, and its quality is evaluated by 1) Perform ‘histogram test’ on the voltage samples (raw-data) of the detector output at sampling frequency of 800 Hz. Statistics of the histogram test showed no non-Gaussian Radio Frequency Interference (RFI) were found when ELBAR-III was operated. 2) Check the voltages at the antenna ports measured during sky measurements. Results showed close values. 3) Check the instrument internal temperature, active cold source temperature and ambient temperature. 3) Analysis the angular behaviour of the processed brightness temperatures. -Temporal resolution: 30 minutes -Spatial resolution: incident angle of observation ranges from 40° to 70° in step of 5°. The area of footprint ranges between 3.31 m^2 and 43.64 m^2 -Accuracy of Measurement: Brightness temperature, 1 K; Soil moisture, 0.001 m^3 m^-3; Soil temperature, 0.1 °C -Unit: Brightness temperature, K; Soil moisture, m^3 m^-3; Soil temperature, °C/K
BOB Su, WEN Jun
The stable oxygen isotope ratio (δ 18O) in precipitation is a comprehensive tracer of global atmospheric processes. Since the 1990s, efforts have been made to study the isotopic composition of precipitation at more than 20 stations located on the TP of the Tibetan Plateau, which are located at the air mass intersection between westerlies and monsoons. In this paper, we establish a database of monthly precipitation δ 18O over the Tibetan Plateau and use different models to evaluate the climate control of precipitation δ 18O over TP. The spatiotemporal pattern of precipitation δ 18O and its relationship with temperature and precipitation reveal three different domains, which are respectively related to westerly wind (North TP), Indian monsoon (South TP) and their transition.
GAO Jing
This data set includes the monthly average actual evapotranspiration of the Tibet Plateau from 2001 to 2018. The data set is based on the satellite remote sensing data (MODIS) and reanalysis meteorological data (CMFD), and is calculated by the surface energy balance system model (SEBS). In the process of calculating the turbulent flux, the sub-grid scale topography drag parameterization scheme is introduced to improve the simulation of sensible and latent heat fluxes. In addition, the evapotranspiration of the model is verified by the observation data of six turbulence flux stations on the Tibetan Plateau, which shows high accuracy. The data set can be used to study the characteristics of land-atmosphere interaction and the water cycle in the Tibetan Plateau.
HAN Cunbo, MA Yaoming, WANG Binbin, ZHONG Lei, MA Weiqiang*, CHEN Xuelong, SU Zhongbo
1) area data of 317 lakes larger than 10 km2 in 1976, 1990, 2000, 2005 and 2013 were obtained based on multi temporal Landsat images; 2) Combining SRTM DEM and Landsat images, the data of lake water volume change in 1976-1990, 1990-2000, 2000-2005 and 2005-2013 were obtained; 3) The accuracy of Lake area is controlled in one pixel, and the accuracy of water volume change is about 5%; 4) This data has been applied to the study of recent changes in lake water volume in the Qinghai Tibet Plateau, and the results have been published in remote sensing of environment. In other future studies, this data can also be used as basic data, as well as in the analysis of changes in ecological environment, climate change, Lake water quality, etc
ZHU Liping,
The field observation platform of the Tibetan Plateau is the forefront of scientific observation and research on the Tibetan Plateau. The land surface processes and environmental changes based comprehensive observation of the land-boundary layer in the Tibetan Plateau provides valuable data for the study of the mechanism of the land-atmosphere interaction on the Tibetan Plateau and its effects. This dataset integrates the 2005-2016 hourly atmospheric, soil hydrothermal and turbulent fluxes observations of Qomolangma Atmospheric and Environmental Observation and Research Station, Chinese Academy of Sciences (QOMS/CAS), Southeast Tibet Observation and Research Station for the Alpine Environment, CAS (SETORS), the BJ site of Nagqu Station of Plateau Climate and Environment, CAS (NPCE-BJ), Nam Co Monitoring and Research Station for Multisphere Interactions, CAS (NAMORS), Ngari Desert Observation and Research Station, CAS (NADORS), Muztagh Ata Westerly Observation and Research Station, CAS (MAWORS). It contains gradient observation data composed of multi-layer wind speed and direction, temperature, humidity, air pressure and precipitation data, four-component radiation data, multi-layer soil temperature and humidity and soil heat flux data, and turbulence data composed of sensible heat flux, latent heat flux and carbon dioxide flux. These data can be widely used in the analysis of the characteristics of meteorological elements on the Tibetan Plaetau, the evaluation of remote sensing products and development of the remote sensing retrieval algorithms, and the evaluation and development of numerical models.
MA Yaoming
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn